#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Is Adherence to Erythrocytes a Factor in Extrapulmonary Dissemination?


article has not abstract


Published in the journal: Is Adherence to Erythrocytes a Factor in Extrapulmonary Dissemination?. PLoS Pathog 6(12): e32767. doi:10.1371/journal.ppat.1001219
Category: Opinion
doi: https://doi.org/10.1371/journal.ppat.1001219

Summary

article has not abstract

Mycoplasma pneumoniae is one of the most common causes of respiratory infections in children and adults worldwide [1], [2]. This bacterial pathogen is estimated to be responsible for at least one case of pneumonia per 1,000 persons and >100,000 adult hospitalizations per year in the United States alone [1][3]. The infection is mostly mild, but all age groups can experience more severe disease, and fatal cases occasionally occur.

Extrapulmonary manifestations are a notable aspect of M. pneumoniae infections and are seen in up to 25% of infected persons [1], [2], [4]. It has been pointed out that the high prevalence of M. pneumoniae infection in most populations predisposes to reporting concurrent but perhaps unrelated events as if they were part of the disease [2], and this may be so particularly for single case reports confirmed only by serologic response [1], [2]. Among reported extrapulmonary manifestations, joint, skin, hematologic, cardiovascular, nervous, and immune system disorders are solidly documented by culture, polymerase chain reaction (PCR), immunohistochemical analysis, and/or serologic analysis [1], [2], [4][7].

Characteristics of M. pneumoniae suggest the possibility that this mycoplasma could adhere to erythrocytes during extrapulmonary dissemination and such adherence could contribute to pathogenesis. First, M. pneumoniae has been cultured from extrapulmonary infection sites such as synovial fluid and pericardial fluid [1], [2], [4], so reaching such sites demonstrates that M. pneumoniae must be able to enter the blood stream. Second, it has long been known that M. pneumoniae adheres to human erythrocytes in vitro [8], [9], and electron microscopy shows M. pneumoniae does not merely adhere to erythrocytes but deforms them by producing depressions in the erythrocyte surface in which the mycoplasmas adhere closely [10]. Third, M. pneumoniae belongs to the same phylogenetic group that contains the hemotropic mycoplasmas; these uncultivated mycoplasmas parasitize erythrocytes of mammalian hosts and produce acute and chronic blood infections with hemolytic anemia and other illness [11]. Hemotropic mycoplasmas deform host erythrocytes and produce depressions in which they also adhere closely, and it is striking that the erythrocyte adherence of M. pneumoniae seen in vitro [10] appears to be identical to that observed in hemotropic mycoplasma erythrocyte infections [12]. Further, M. pneumoniae famously causes half or more of patients to produce erythrocyte cold agglutinins, and this character also is shared with hemotropic mycoplasmas [11]. We note that there is a report that a hemotropic mycoplasma can invade erythrocytes [13].

Some notion of the frequency of blood entry by M. pneumoniae may be provided by PCR studies that have demonstrated M. pneumoniae DNA in serum [14][16]. M. pneumoniae DNA has been detected in sera from pediatric patients both with pneumonia (1/25) and, significantly, without pneumonia (10/17), and in some cases M. pneumoniae DNA was detected for periods of more than 20 days, suggesting a bacteremia [14]. A real-time PCR study that utilized archival sera mainly from adults found M. pneumoniae DNA in 15 of 29 seropositive patient sera [16]. If these findings and other PCR reports detecting M. pneumoniae DNA in interior tissues often reflects the presence of organisms, as is thought by many investigators, then blood entry by M. pneumoniae might not be rare.

It may be necessary, nonetheless, to examine blood from a number of patients because of variables that could affect the presence of M. pneumoniae in a given sample. These include the frequency with which infection leads to blood entry, the infection stage(s) during which M. pneumoniae may enter the blood, the dwell period in blood, and the patient's immune status. The genotype of the infecting strain [17][20] also could be a factor in blood entry.

Rapid identification of M. pneumoniae infections by PCR [21][23] permits selection of appropriate cases for investigating the possibility that M. pneumoniae adheres to patient erythrocytes. The following information about hemotropic mycoplasma infections may be helpful in examining this possibility. Hemotropic mycoplasma infections have been detected mainly by visual search for erythrocyte-attached mycoplasmas in Wright-Giemsa blood smears, a relatively insensitive method, by animal inoculation, and by PCR (the current standard), but also of course by other molecular biological and instrument-based methods, including fluorescent-activated cell sorting. The percentage of infected erythrocytes in stained smears can vary from extremely high values (one or more mycoplasmas are seen attached to nearly every erythrocyte in most microscope fields) to very low values (searches of replicate smears from a PCR positive blood are negative), depending on, importantly, not only the stage of the infection but also the Mycoplasma species. Immuofluorescent or DNA staining substantially improves visual searching, and fluorescent staining allows more sensitive examination of archival Wright-Giemsa stained slides [24]. Specific staining also permits identification of mycoplasmas free in the plasma that by light microscopy might be mistaken for nonbacterial particles.

Obtaining proof that M. pneumoniae has the ability to adhere to patient erythrocytes would enlarge our understanding of M. pneumoniae pathogenicity and provide an intriguing new perspective on how this mycoplasma disseminates in the bloodstream to produce extrapulmonary disease.


Zdroje

1. WaitesKB

TalkingtonDF

2004

Mycoplasma pneumoniae and its role as a human pathogen.

Clin Microbiol Rev

17

697

728

2. BaumSJ

2005

Mycoplasma pneumoniae and atypical pneumonia.

Bennett's principles and practice of infectious diseases.

MandellD

Philadelphia

Elsevier

2271

2280

3. LauderdaleTL

ChangFY

BenRJ

YinHC

NiYH

2005

Etiology of community acquired pneumonia among adult patients requiring hospitalization in Taiwan.

Respir Med

99

1079

1086

4. StammB

MoschopulosM

HungerbuehlerH

GuarnerJ

GenrichGI

2008

Neuroinvasion by Mycoplasma pneumoniae in acute disseminated encephalomyelitis.

Emerg Infect Dis

14

641

643

5. NaritaM

2010

Pathogenesis of extrapulmonary manifestations of Mycoplasma pneumoniae infection with special reference to pneumonia.

J Infect Chemother

16

162

169

6. AtkinsonTP

BalishMF

WaitesKB

2008

Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections.

FEMS Microbiol Rev

32

956

973

7. WaitesKB

BalishMF

AtkinsonTP

2008

New insights into the pathogenesis and detection of Mycoplasma pneumoniae infections.

Future Microbiol

3

635

648

8. MancheeRJ

Taylor-RobinsonD

1968

Haemadsorption and haemagglutination by mycoplasmas.

J Gen Microbiol

50

465

478

9. BasemanJB

BanaiM

KahaneI

1982

Sialic acid residues mediate Mycoplasma pneumoniae attachment to human and sheep erythrocytes.

Infect Immun

38

389

391

10. DeasJE

JanneyFA

LeeLT

HoweC

1979

Immune electron microscopy of cross-reactions between Mycoplasma pneumoniae and human erythrocytes.

Infect Immun

24

211

217

11. NeimarkH

JohanssonKE

RikihisaY

TullyJG

2001

Proposal to transfer some members of the genera Haemobartonella and Eperythrozoon to the genus Mycoplasma with descriptions of ‘Candidatus Mycoplasma haemofelis’, ‘Candidatus Mycoplasma haemomuris’, ‘Candidatus Mycoplasma haemosuis’ and ‘Candidatus Mycoplasma wenyonii’.

Int J Syst Evol Microbiol

51

891

899

12. NeimarkH

BarnaudA

GounonP

MichelJC

ContaminH

2002

The putative haemobartonella that influences Plasmodium falciparum parasitaemia in squirrel monkeys is a haemotropic mycoplasma.

Microbes Infect

4

693

698

13. GroebelK

HoelzleK

WittenbrinkMM

ZieglerU

HoelzleLE

2009

Mycoplasma suis invades porcine erythrocytes.

Infect Immun

77

576

584

14. NaritaM

MatsuzonoY

ItakuraO

TogashiT

KikutaH

1996

Survey of mycoplasmal bacteremia detected in children by polymerase chain reaction.

Clin Infect Dis

23

522

525

15. NaritaM

YamadaS

NakayamaT

SawadaH

NakajimaM

2001

Two cases of lymphadenopathy with liver dysfunction due to Mycoplasma pneumoniae infection with mycoplasmal bacteraemia without pneumonia.

J Infect

42

154

156

16. DaxboeckF

KhanakahG

BauerC

StadlerM

HofmannH

2005

Detection of Mycoplasma pneumoniae in serum specimens from patients with mycoplasma pneumonia by PCR. Int J Med Microbiol 295: 279-285.

Erratum: Int J Med Microbiol 2006;

55

17. Dorigo-ZetsmaJW

DankertJ

ZaatSA

2000

Genotyping of Mycoplasma pneumoniae clinical isolates reveals eight P1 subtypes within two genomic groups.

J Clin Microbiol

38

965

970

18. KenriT

OkazakiN

YamazakiT

NaritaM

IzumikawaK

2008

Genotyping analysis of Mycoplasma pneumoniae clinical strains in Japan between 1995 and 2005: type shift phenomenon of M. pneumoniae clinical strains.

J Med Microbiol

57

469

475

19. DumkeR

Von BaumH

LückPC

JacobsE

2010

Subtypes and variants of Mycoplasma pneumoniae: local and temporal changes in Germany 2003-2006 and absence of a correlation between the genotype in the respiratory tract and the occurrence of genotype-specific antibodies in the sera of infected patients.

Epidemiol Infect

25

1

9

20. HansenEJ

WilsonRM

BasemanJB

1979

Isolation of mutants of Mycoplasma pneumoniae defective in hemadsorption.

Infect Immun

23

903

906

21. WinchellJM

ThurmanKA

MitchellSL

ThackerWL

FieldsBS

2008

Evaluation of three real-time PCR assays for detection of Mycoplasma pneumoniae in an outbreak investigation.

J Clin Microbiol

46

3116

3118

22. TouatiA

BenardA

Ben HassenA

BébéarCM

PereyreS

2009

Evaluation of five commercial real-time PCR assays for the detection of Mycoplasma pneumoniae in respiratory tract specimens.

J Clin Microbiol

47

2268

2271

23. DumkeR

JacobsE

2009

Comparison of commercial and in-house real-time PCR assays used for detection of Mycoplasma pneumoniae.

J Clin Microbiol

47

441

444

24. KobayashiY

KimuraS

TanakaK

WadaK

OzawaM

1991

Shift in the megakaryocyte ploidy in MDS patients: microcytofluorometry with DAPI staining after destaining of Wright-Giemsa stain.

Br J Haematol

79

556

561

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#