Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity
Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.
Vyšlo v časopise:
Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity. PLoS Pathog 7(12): e32767. doi:10.1371/journal.ppat.1002398
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002398
Souhrn
Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.
Zdroje
1. NeumannGChenHGaoGFShuYKawaokaY 2010 H5N1 influenza viruses: outbreaks and biological properties. Cell Res 20 51 61
2. WebsterRGPeirisMChenHGuanY 2006 H5N1 outbreaks and enzootic influenza. Emerg Infect Dis 12 3 8
3. World Health Organization 2011 Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. Available: http://www.who.int/csr/disease/avian_influenza/. Accessed 19 August 2011
4. BrownIH 2010 Summary of avian influenza activity in Europe, Asia, and Africa, 2006-2009. Avian Dis 54 187 193
5. SkehelJJWileyDC 2000 Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69 531 569
6. SalomonRWebsterRG 2009 The influenza virus enigma. Cell 136 402 410
7. TscherneDMGarcia-SastreA 2011 Virulence determinants of pandemic influenza viruses. J Clin Invest 121 6 13
8. GartenWHallenbergerSOrtmannDSchaferWVeyM 1994 Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 76 217 225
9. RottRKlenkHD 1987 Significance of viral glycoproteins for infectivity and pathogenicity. Zentralbl Bakteriol Mikrobiol Hyg [A] 266 145 154
10. WebsterRGRottR 1987 Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50 665 666
11. ConnorRJKawaokaYWebsterRGPaulsonJC 1994 Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205 17 23
12. RogersGNPaulsonJCDanielsRSSkehelJJWilsonIA 1983 Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304 76 78
13. BulloughPAHughsonFMSkehelJJWileyDC 1994 Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371 37 43
14. GiannecchiniSCampitelliLCalzolettiLDe MarcoMAAzziA 2006 Comparison of in vitro replication features of H7N3 influenza viruses from wild ducks and turkeys: potential implications for interspecies transmission. J Gen Virol 87 171 175
15. LinYPWhartonSAMartinJSkehelJJWileyDC 1997 Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion. Virology 233 402 410
16. ReedMLBridgesOASeilerPKimJKYenHL 2010 The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity and transmissibility in ducks. J Virol 84 1527 1535
17. HulseDJWebsterRGRussellRJPerezDR 2004 Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. J Virol 78 9954 9964
18. MitnaulLJMatrosovichMNCastrucciMRTuzikovABBovinNV 2000 Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74 6015 6020
19. ReedMLYenHLDuBoisRMBridgesOASalomonR 2009 Amino acid residues in the fusion peptide pocket regulate the pH of activation of the H5N1 influenza virus hemagglutinin protein. J Virol 83 3568 3580
20. SuBWurtzerSRameix-WeltiMADwyerDvan der WerfS 2009 Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS One 4 e8495
21. KaverinNVRudnevaIAGovorkovaEATimofeevaTAShilovAA 2007 Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. J Virol 81 12911 12917
22. StevensJBlixtOTumpeyTMTaubenbergerJKPaulsonJC 2006 Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312 404 410
23. YamadaSSuzukiYSuzukiTLeMQNidomCA 2006 Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444 378 382
24. EkiertDCBhabhaGElsligerMAFriesenRHJongeneelenM 2009 Antibody recognition of a highly conserved influenza virus epitope. Science 324 246 251
25. SuiJHwangWCPerezSWeiGAirdD 2009 Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16 265 273
26. RachakondaPSVeitMKorteTLudwigKBottcherC 2007 The relevance of salt bridges for the stability of the influenza virus hemagglutinin. FASEB J 21 995 1002
27. XuRWilsonIA 2011 Structural characterization of an early fusion intermediate of influenza virus hemagglutinin. J Virol 85 5172 5182
28. WeisWICusackSCBrownJHDanielsRSSkehelJJ 1990 The structure of a membrane fusion mutant of the influenza virus haemagglutinin. EMBO J 9 17 24
29. Aguilar-YanezJMPortillo-LaraRMendoza-OchoaGIGarcia-EchauriSALopez-PachecoF 2010 An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS One 5 e11694
30. DuBoisRMAguilar-YanezJMMendoza-OchoaGIOropeza-AlmazanYSchultz-CherryS 2011 The receptor-binding domain of influenza virus hemagglutinin produced in Escherichia coli folds into its native, immunogenic structure. J Virol 85 865 872
31. XuREkiertDCKrauseJCHaiRCroweJEJr 2010 Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328 357 360
32. YangHCarneyPStevensJ 2010 Structure and receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Curr Influenza RRN1152
33. ScholtissekC 1985 Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine 3 215 218
34. DanielsPSJeffriesSYatesPSchildGCRogersGN 1987 The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J 6 1459 1465
35. DanielsRSDownieJCHayAJKnossowMSkehelJJ 1985 Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40 431 439
36. IlyushinaNAGovorkovaEARussellCJHoffmannEWebsterRG 2007 Contribution of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. J Gen Virol 88 1266 1274
37. SteinhauerDAWhartonSASkehelJJWileyDCHayAJ 1991 Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc Natl Acad Sci U S A 88 11525 11529
38. MarkovicILeikinaEZhukovskyMZimmerbergJChernomordikLV 2001 Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. J Cell Biol 155 833 844
39. WagnerRHeuerDWolffTHerwigAKlenkHD 2002 N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication. J Gen Virol 83 601 609
40. ChernomordikLVFrolovVALeikinaEBronkPZimmerbergJ 1998 The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J Cell Biol 140 1369 1382
41. TsuchiyaESugawaraKHongoSMatsuzakiYMurakiY 2002 Role of overlapping glycosylation sequons in antigenic properties, intracellular transport and biological activities of influenza A/H2N2 virus haemagglutinin. J Gen Virol 83 3067 3074
42. RaySPaulmuruganRPatelMRAhnBCWuL 2008 Noninvasive imaging of therapeutic gene expression using a bidirectional transcriptional amplification strategy. Mol Ther 16 1848 1856
43. OtwinowskiZMinorW 1997 Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276 307 326
44. KilanderARykkvinRDudmanSGHungnesO 2010 Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009-2010. Eurosurveill 15 1 3
45. de VriesRPde VriesEBoschBJde GrootRJRottierPJ 2010 The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology 403 17 25
46. MurshudovGNVaginAADodsonEJ 1997 Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53 240 255
47. ChenVBArendallWB3rdHeaddJJKeedyDAImmorminoRM 2010 MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66 12 21
48. HallTA 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41 95 98
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Controlling Viral Immuno-Inflammatory Lesions by Modulating Aryl Hydrocarbon Receptor Signaling
- Fungal Virulence and Development Is Regulated by Alternative Pre-mRNA 3′End Processing in
- Epstein-Barr Virus Nuclear Antigen 3C Stabilizes Gemin3 to Block p53-mediated Apoptosis
- Engineered Immunity to Infection