Neonatal CD8 T-cell Hierarchy Is Distinct from Adults and Is Influenced by Intrinsic T cell Properties in Respiratory Syncytial Virus Infected Mice
Following respiratory syncytial virus infection of adult CB6F1 hybrid mice, a predictable CD8+ T cell epitope hierarchy is established with a strongly dominant response to a Kd-restricted peptide (SYIGSINNI) from the M2 protein. The response to KdM282-90 is ∼5-fold higher than the response to a subdominant epitope from the M protein (NAITNAKII, DbM187-195). After infection of neonatal mice, a distinctly different epitope hierarchy emerges with codominant responses to KdM282-90 and DbM187-195. Adoptive transfer of naïve CD8+ T cells from adults into congenic neonates prior to infection indicates that intrinsic CD8+ T cell factors contribute to age-related differences in hierarchy. Epitope-specific precursor frequency differs between adults and neonates and influences, but does not predict the hierarchy following infection. Additionally, dominance of KdM282-90 –specific cells does not correlate with TdT activity. Epitope-specific Vβ repertoire usage is more restricted and functional avidity is lower in neonatal mice. The neonatal pattern of codominance changes after infection at 10 days of age, and rapidly shifts to the adult pattern of extreme KdM282- 90 -dominance. Thus, the functional properties of T cells are selectively modified by developmental factors in an epitope-specific and age-dependent manner.
Vyšlo v časopise:
Neonatal CD8 T-cell Hierarchy Is Distinct from Adults and Is Influenced by Intrinsic T cell Properties in Respiratory Syncytial Virus Infected Mice. PLoS Pathog 7(12): e32767. doi:10.1371/journal.ppat.1002377
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002377
Souhrn
Following respiratory syncytial virus infection of adult CB6F1 hybrid mice, a predictable CD8+ T cell epitope hierarchy is established with a strongly dominant response to a Kd-restricted peptide (SYIGSINNI) from the M2 protein. The response to KdM282-90 is ∼5-fold higher than the response to a subdominant epitope from the M protein (NAITNAKII, DbM187-195). After infection of neonatal mice, a distinctly different epitope hierarchy emerges with codominant responses to KdM282-90 and DbM187-195. Adoptive transfer of naïve CD8+ T cells from adults into congenic neonates prior to infection indicates that intrinsic CD8+ T cell factors contribute to age-related differences in hierarchy. Epitope-specific precursor frequency differs between adults and neonates and influences, but does not predict the hierarchy following infection. Additionally, dominance of KdM282-90 –specific cells does not correlate with TdT activity. Epitope-specific Vβ repertoire usage is more restricted and functional avidity is lower in neonatal mice. The neonatal pattern of codominance changes after infection at 10 days of age, and rapidly shifts to the adult pattern of extreme KdM282- 90 -dominance. Thus, the functional properties of T cells are selectively modified by developmental factors in an epitope-specific and age-dependent manner.
Zdroje
1. ParamoreLCCiurylaVCieslaGLiuL 2004 Economic impact of respiratory syncytial virus-related illness in the US: an analysis of national databases. Pharmacoeconomics 22 275 284
2. HallCBLongCESchnabelKC 2001 Respiratory syncytial virus infections in previously healthy working adults. Clin Infect Dis 33 792 796
3. GlezenWPTaberLHFrankALKaselJA 1986 Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140 543 546
4. ShayDKHolmanRCNewmanRDLiuLLStoutJW 1999 Bronchiolitis-associated hospitalizations among US children, 1980-1996. JAMA 282 1440 1446
5. MarchantANewportM 2000 Prevention of infectious diseases by neonatal and early infantile immunization: prospects for the new millennium. Curr Opin Infect Dis 13 241 246
6. SiegristCA 2001 Neonatal and early life vaccinology. Vaccine 19 3331 3346
7. IzurietaHSThompsonWWKramarzPShayDKDavisRL 2000 Influenza and the rates of hospitalization for respiratory disease among infants and young children. N Engl J Med 342 232 239
8. BarouchDHLetvinNL 2001 CD8+ cytotoxic T lymphocyte responses to lentiviruses and herpesviruses. Curr Opin Immunol 13 479 482
9. GuidottiLGChisariFV 2001 Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19 65 91
10. MescherMFPopescuFEGernerMHammerbeckCDCurtsingerJM 2007 Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors. Semin Cancer Biol 17 299 308
11. YewdellJW 2006 Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 25 533 543
12. ZaghouaniHHoemanCMAdkinsB 2009 Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol 30 585 591
13. McCarronMJReenDJ 2010 Neonatal CD8+ T-cell differentiation is dependent on interleukin-12. Hum Immunol 71 1172 1179
14. GarciaAMFadelSACaoSSarzottiM 2000 T cell immunity in neonates. Immunol Res 22 177 190
15. RidgeJPFuchsEJMatzingerP 1996 Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271 1723 1726
16. RothenbergETrigliaD 1983 Clonal proliferation unlinked to terminal deoxynucleotidyl transferase synthesis in thymocytes of young mice. J Immunol 130 1627 1633
17. BogueMCandeiasSBenoistCMathisD 1991 A special repertoire of alpha:beta T cells in neonatal mice. EMBO J 10 3647 3654
18. PannetierCCochetMDarcheSCasrougeAZollerM 1993 The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci U S A 90 4319 4323
19. MartinezXRegnerMKovarikJZareiSHauserC 2003 CD4-independent protective cytotoxic T cells induced in early life by a non-replicative delivery system based on virus-like particles. Virology 305 428 435
20. ZhangJSilvestriNWhittonJLHassettDE 2002 Neonates mount robust and protective adult-like CD8(+)-T-cell responses to DNA vaccines. J Virol 76 11911 11919
21. KovarikJBozzottiPLove-HomanLPihlgrenMDavisHL 1999 CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J Immunol 162 1611 1617
22. RutiglianoJARuckwardtTJMartinJEGrahamBS 2007 Relative dominance of epitope-specific CD8+ T cell responses in an F1 hybrid mouse model of respiratory syncytial virus infection. Virology 362 314 319
23. DashPMcClarenJLOguinTH3rdRothwellWToddB 2011 Paired analysis of TCRalpha and TCRbeta chains at the single-cell level in mice. J Clin Invest 121 288 295
24. BillamPBonaparteKLLiuJRuckwardtTJChenM 2011 T Cell receptor clonotype influences epitope hierarchy in the CD8+ T cell response to respiratory syncytial virus infection. J Biol Chem 286 4829 4841
25. PriceDABrenchleyJMRuffLEBettsMRHillBJ 2005 Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J Exp Med 202 1349 1361
26. PrabhuDasMAdkinsBGansHKingCLevyO 2011 Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol 12 189 194
27. GrahamBS 2011 Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 239 149 166
28. KimHWCancholaJGBrandtCDPylesGChanockRM 1969 Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89 422 434
29. CormierSAYouDHonnegowdaS 2010 The use of a neonatal mouse model to study respiratory syncytial virus infections. Expert Rev Anti Infect Ther 8 1371 1380
30. CulleyFJPollottJOpenshawPJ 2002 Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med 196 1381 1386
31. DakhamaALeeYMOhnishiHJingXBalhornA 2009 Virus-specific IgE enhances airway responsiveness on reinfection with respiratory syncytial virus in newborn mice. J Allergy Clin Immunol 123 138 145 e135
32. DakhamaAParkJWTaubeCJoethamABalhornA 2005 The enhancement or prevention of airway hyperresponsiveness during reinfection with respiratory syncytial virus is critically dependent on the age at first infection and IL-13 production. J Immunol 175 1876 1883
33. TaskerLLindsayRWClarkeBTCochraneDWHouS 2008 Infection of mice with respiratory syncytial virus during neonatal life primes for enhanced antibody and T cell responses on secondary challenge. Clin Exp Immunol 153 277 288
34. TregoningJSYamaguchiYHarkerJWangBOpenshawPJ 2008 The role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice. J Virol 82 4115 4124
35. YouDBecnelDWangKRippleMDalyM 2006 Exposure of neonates to respiratory syncytial virus is critical in determining subsequent airway response in adults. Respir Res 7 107
36. GrahamBSPerkinsMDWrightPFKarzonDT 1988 Primary respiratory syncytial virus infection in mice. J Med Virol 26 153 162
37. HarkerJALeeDCYamaguchiYWangBBukreyevA 2010 Delivery of cytokines by recombinant virus in early life alters the immune response to adult lung infection. J Virol 84 5294 5302
38. SteinRTSherrillDMorganWJHolbergCJHalonenM 1999 Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet 354 541 545
39. RutiglianoJARockMTJohnsonAKCroweJEJrGrahamBS 2005 Identification of an H-2D(b)-restricted CD8+ cytotoxic T lymphocyte epitope in the matrix protein of respiratory syncytial virus. Virology 337 335 343
40. RuckwardtTJLuongoCMalloyAMLiuJChenM 2010 Responses against a subdominant CD8+ T cell epitope protect against immunopathology caused by a dominant epitope. J Immunol 185 4673 4680
41. FeeneyAJ 1991 Junctional sequences of fetal T cell receptor beta chains have few N regions. J Exp Med 174 115 124
42. FeeneyAJ 1993 Junctional diversity in the absence of N regions. Neonatal T cell receptor beta chain junctional sequences are more heterogeneous than neonatal T cell receptor gamma delta or IgH junctions. J Immunol 151 3094 3099
43. RuddBDVenturiVDavenportMPNikolich-ZugichJ 2011 Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. J Immunol 186 2056 2064
44. KotturiMFScottIWolfeTPetersBSidneyJ 2008 Naive precursor frequencies and MHC binding rather than the degree of epitope diversity shape CD8+ T cell immunodominance. J Immunol 181 2124 2133
45. ObarJJKhannaKMLefrancoisL 2008 Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28 859 869
46. SchmidtJNeumann-HaefelinCAltayTGostickEPriceDA 2011 Immunodominance of HLA-A2-Restricted Hepatitis C Virus-Specific CD8+ T Cell Responses Is Linked to Naive-Precursor Frequency. J Virol 85 5232 5236
47. La GrutaNLRothwellWTCukalacTSwanNGValkenburgSA 2010 Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J Clin Invest 120 1885 1894
48. CatanzaroATKoupRARoedererMBailerRTEnamaME 2006 Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect Dis 194 1638 1649
49. MoonJJChuHHHatayeJPaganAJPepperM 2009 Tracking epitope-specific T cells. Nat Protoc 4 565 581
50. MoonJJChuHHPepperMMcSorleySJJamesonSC 2007 Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27 203 213
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Controlling Viral Immuno-Inflammatory Lesions by Modulating Aryl Hydrocarbon Receptor Signaling
- Fungal Virulence and Development Is Regulated by Alternative Pre-mRNA 3′End Processing in
- Epstein-Barr Virus Nuclear Antigen 3C Stabilizes Gemin3 to Block p53-mediated Apoptosis
- Engineered Immunity to Infection