The Enteropathogenic (EPEC) Tir Effector Inhibits NF-κB Activity by Targeting TNFα Receptor-Associated Factors
Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.
Vyšlo v časopise:
The Enteropathogenic (EPEC) Tir Effector Inhibits NF-κB Activity by Targeting TNFα Receptor-Associated Factors. PLoS Pathog 7(12): e32767. doi:10.1371/journal.ppat.1002414
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002414
Souhrn
Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.
Zdroje
1. ChenHDFrankelG 2005 Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev 29 83 98
2. NataroJPKaperJB 1998 Diarrheagenic Escherichia coli. Clin Microbiol Rev 11 142 201
3. DeanPKennyB 2009 The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 12 101 109
4. IguchiAThomsonNROguraYSaundersDOokaT 2009 Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 191 347 354
5. DeanPMarescaMSchullerSPhillipsADKennyB 2006 Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc Natl Acad Sci U S A 103 1876 1881
6. DeanPKennyB 2004 Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 54 665 675
7. CanilCRosenshineIRuschkowskiSDonnenbergMSKaperJB 1993 Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect Immun 61 2755 2762
8. MaCWickhamMEGuttmanJADengWWalkerJ 2006 Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cell Microbiol 8 1669 1686
9. ShifflettDEClayburghDRKoutsourisATurnerJRHechtGA 2005 Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab Invest 85 1308 1324
10. Ruchaud-SparaganoMHMarescaMKennyB 2007 Enteropathogenic Escherichia coli (EPEC) inactivate innate immune responses prior to compromising epithelial barrier function. Cell Microbiol 9 1909 1921
11. BrownJWangHHajishengallisGNMartinM 2011 TLR-signaling Networks: An Integration of Adaptor Molecules, Kinases, and Cross-talk. J Dent Res 90 417 427
12. DoyleSLO'NeillLA 2006 Toll-like receptors: From the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 72 1102 13
13. KarinMGallagherE 2009 TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 228 225 240
14. IsraelA 2010 The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2 a000158
15. SoltLAMayMJ 2008 The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42 3 18
16. HabelhahH 2010 Emerging complexity of protein ubiquitination in the NF-kappaB pathway. Genes Cancer 1 735 747
17. SkaugBJiangXChenZJ 2009 The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78 769 796
18. IhnatkoRKubesM 2007 TNF signaling: early events and phosphorylation. Gen Physiol Biophys 26 159 167
19. KobayashiTWalshMCChoiY 2004 The role of TRAF6 in signal transduction and the immune response. Microbes Infect 6 1333 1338
20. O'NeillLA 2008 When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29 12 20
21. MarescaMMillerDQuitardSDeanPKennyB 2005 Enteropathogenic Escherichia coli (EPEC) effector-mediated suppression of antimicrobial nitric oxide production in a small intestinal epithelial model system. Cell Microbiol 7 1749 1762
22. BaruchKGur-ArieLNadlerCKobySYerushalmiG 2011 Metalloprotease type III effectors that specifically cleave JNK and NF-kappaB. Embo J 30 221 223
23. MuehlenSRuchaud-SparaganoMHKennyB 2011 Proteasome-independent degradation of canonical NF{kappa}B complex components by the NleC protein of pathogenic Escherchia coli. J Biol Chem 286 5100 5107
24. PearsonJSRiedmaierPMarchesOFrankelGHartlandEL 2011 A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-kappaB for degradation. Mol Microbiol 80 219 230
25. YenHOokaTIguchiAHayashiTSugimotoN 2010 NleC, a Type III Secretion Protease, Compromises NF-kappaB Activation by Targeting p65/RelA. PLoS Pathog 6 e1001231
26. RoyanSVJonesRMKoutsourisARoxasJLFalzariK 2010 Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate NF-kappaB activation. Mol Microbiol 78 1232 1245
27. GaoXWanFMateoKCallegariEWangD 2009 Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function. PLoS Pathog 5 e1000708
28. NadlerCBaruchKKobiSMillsEHavivG 2010 The type III secretion effector NleE inhibits NF-kappaB activation. PLoS Pathog 6 e1000743
29. NewtonHJPearsonJSBadeaLKellyMLucasM 2010 The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65. PLoS Pathog 6 e1000898
30. WietekCCleaverCSLudbrookVWildeJWhiteJ 2006 IkappaB kinase epsilon interacts with p52 and promotes transactivation via p65. J Biol Chem 281 34973 34981
31. MeylanEBurnsKHofmannKBlancheteauVMartinonF 2004 RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5 503 507
32. DiYLiSWangLZhangYDorfME 2008 Homeostatic interactions between MEKK3 and TAK1 involved in NF-kappaB signaling. Cell Signal 20 705 713
33. ShifrinYKirschnerJGeigerBRosenshineI 2002 Enteropathogenic Escherichia coli induces modification of the focal adhesions of infected host cells. Cell Microbiol 4 235 243
34. KennyBWarawaJ 2001 Enteropathogenic Escherichia coli (EPEC) Tir receptor molecule does not undergo full modification when introduced into host cells by EPEC-independent mechanisms. Infect Immun 69 1444 1453
35. KunschCLangRKRosenCAShannonMF 1994 Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 153 153 164
36. HorieRWatanabeTItoKMorisitaYWatanabeM 2002 Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-Sternberg cells. Am J Pathol 160 1647 1654
37. AuPYYehWC 2007 Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol 597 32 47
38. SalomonsFAAcsKDantumaNP 2010 Illuminating the ubiquitin/proteasome system. Exp Cell Res 316 1289 1295
39. AdhikariAXuMChenZJ 2007 Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26 3214 3226
40. FrankelGPhillipsADTrabulsiLRKnuttonSDouganG 2001 Intimin and the host cell—is it bound to end in Tir(s)? Trends Microbiol 9 214 218
41. DeanPMuehlenSQuitardSKennyB 2010 The bacterial effectors EspG and EspG2 induce a destructive calpain activity that is kept in check by the co-injected Tir effector. Cell Microbiol 12 1308 1321
42. ZapataJMReedJC 2002 TRAF1: lord without a RING. Sci STKE 2002 pe27
43. ZhengMMorgan-LappeSEYangJBockbraderKMPamarthyD 2008 Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res 68 7570 7578
44. MohamedMRMcFaddenG 2009 NFκB inhibitors: strategies from poxviruses. Cell Cycle 8 3125 3132
45. ZhouHMonackDMKayagakiNWertzIYinJ 2005 Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med 202 1327 1332
46. ShawRKDaniellSFrankelGKnuttonS 2002 Enteropathogenic Escherichia coli translocate Tir and form an intimin-Tir intimate attachment to red blood cell membranes. Microbiology 148 1355 1365
47. CampelloneKGRankinSPawsonTKirschnerMWTipperDJ 2004 Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164 407 416
48. KennyB 2001 The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell Microbiol 3 499 510
49. WarawaJKennyB 2001 Phosphoserine modification of the enteropathogenic Escherichia coli Tir molecule is required to trigger conformational changes in Tir and efficient pedestal elongation. Mol Microbiol 42 1269 1280
50. KennyB 1999 Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31 1229 1241
51. CrossmanLCChaudhuriRRBeatsonSAWellsTJDesvauxM 2010 A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 192 5822 5831
52. PettyNKBulginRCrepinVFCerdeno-TarragaAMSchroederGN 2010 The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 192 525 538
53. OguraYOokaTIguchiATohHAsadulghaniM 2009 Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 106 17939 17944
54. KennyBLaiLCFinlayBBDonnenbergMS 1996 EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol 20 313 323
55. DonnenbergMSKaperJB 1991 Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59 4310 4317
56. KennyBJepsonM 2000 Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2 579 590
57. KennyBDeVinneyRSteinMReinscheidDJFreyEA 1997 Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91 511 520
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 12
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Controlling Viral Immuno-Inflammatory Lesions by Modulating Aryl Hydrocarbon Receptor Signaling
- Fungal Virulence and Development Is Regulated by Alternative Pre-mRNA 3′End Processing in
- Epstein-Barr Virus Nuclear Antigen 3C Stabilizes Gemin3 to Block p53-mediated Apoptosis
- Engineered Immunity to Infection