#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Computational and Biochemical Analysis of the Effector AvrBs2 and Its Role in the Modulation of Type Three Effector Delivery


Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper. Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance to bacterial pathogens.


Vyšlo v časopise: Computational and Biochemical Analysis of the Effector AvrBs2 and Its Role in the Modulation of Type Three Effector Delivery. PLoS Pathog 7(12): e32767. doi:10.1371/journal.ppat.1002408
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002408

Souhrn

Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper. Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance to bacterial pathogens.


Zdroje

1. ChisholmSCoakerGDayBStaskawiczBJ 2006 Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124 803 814

2. Gomez-GomezLBollerT 2000 FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5 1003 1011

3. ZipfelCRobatzekSNavarroLOakeleyEJJonesJD 2004 Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428 764 767

4. ZipfelCKunzeGChinchillaDCaniardAJonesJD 2006 Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125 749 760

5. AvelinaEJamesRA 2004 Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell Microbiol 6 1027 1040

6. CoakerGFalickAStaskawiczB 2005 Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308 548 550

7. DesveauxDSingerAUDanglJL 2006 Type III effector proteins: doppelgangers of bacterial virulence. Curr Opin in Plant Biol 9 376 382

8. JanjusevicRAbramovitchRBMartinGBStebbinsCE 2006 A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311 222 226

9. WangYLiJHouSWangXLiY 2010 A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22 2033 2044

10. QutobDTedman-JonesJGijzenM 2006 Effector-triggered immunity by the plant pathogen Phytophthora. Trends Microbiol 14 470 473

11. DanglJLJonesJD 2001 Plant pathogens and integrated defence responses to infection. Nature 411 826 833

12. ZhangJLuHLiXLiYCuiH 2010 Effector-Triggered and Pathogen-Associated Molecular Pattern–Triggered Immunity Differentially Contribute to Basal Resistance to Pseudomonas syringae. Mol Plant Microbe Interact 23 940 948

13. TsudaKSatoMGlazebrookJCohenJDKatagiriF 2008 Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53 763 775

14. AlfanoJRCharkowskiAODengWLBadelJLPetnicki-OcwiejaT 2000 The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97 4856 4861

15. BentAFMackeyD 2007 Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45 399 436

16. MudgettMB 2005 New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56 509 531

17. SoryMPCornelisGR 1994 Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14 583 594

18. Casper-LindleyCDahlbeckDClarkETStaskawiczBJ 2002 Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc Natl Acad Sci USA 99 8336 8341

19. CrabillEJoeABlockAvan RooyenJMAlfanoJR 2010 Plant immunity directly or indirectly restricts the injection of type III effectors by the Pseudomonas syringae type III secretion system. Plant Physiol .110.159723

20. ThiemeFKoebnikRBekelTBergerCBochJ 2005 Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187 7254 7266

21. PotnisNKrasilevaKChowVAlmeidaNFPatilPB 2011 Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12 146

22. KearneyBStaskawiczBJ 1990 Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346 385 386

23. SwordsKMDahlbeckDKearneyBRoyMStaskawiczBJ 1996 Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol 178 4661 4669

24. GassmannWDahlbeckDChesnokovaOMinsavageGVJonesJB 2000 Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria. J Bacteriol 182 7053 7059

25. TaiTHDahlbeckDClarkETGajiwalaPPasionR 1999 Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 96 14153 14158

26. LeisterRTDahlbeckDDayBLiYChesnokovaO 2005 Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17 1268 1278

27. KousikCSRitchieDF 1999 Development of bacterial spot on near-isogenic lines of bell pepper carrying gene pyramids composed of defeated major resistance genes. Phytopathology 89 1066 1072

28. HibberdAMBassettMJStallRE 1987 Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 77 1304 1307

29. MinsavageGVWhalenMCKearneyBBonasUStaskawiczBJ 1990 Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Mol Plant Microbe Interact 3 41 47

30. RonaldPCStaskawiczBJ 1988 The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol Plant Microbe Interact 1 191 198

31. BonasUStallREStaskawiczBJ 1989 Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218 127 136

32. JordanTRomerPMeyerASzczesnyRPierreM 2006 Physical delimitation of the pepper Bs3 resistance gene specifying recognition of the AvrBs3 protein from Xanthomonas campestris pv. vesicatoria. Theor Appl Genet 113 895 905

33. RomerPHahnSJordanTStraussTBonasU 2007 Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene. Science 318 645 648

34. SchwanTGSchrumpfMEHinnebuschBJAndersonDEKonkelME 1996 GlpQ: An antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34 2483 2492

35. ThompsonJDHigginsDGGibsonTJ 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673 4680

36. SantelliESchwarzenbacherRMcMullanDBioracTBrinenLS 2004 Crystal structure of a glycerophosphodiester phosphodiesterase (GDPD) from Thermotoga maritima (TM1621) at 1.60 A resolution. Proteins 56 167 170

37. SaliABlundellTL 1993 Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234 779 815

38. ZhengBBerrieCPCordaDFarquharMG 2003 GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci U S A 100 1745 1750

39. ZhengBChenDFarquharMG 2000 MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16. Proc Natl Acad Sci U S A 97 3999 4004

40. LarsonTEhrmannMBoosW 1983 Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem 258 5428 5432

41. SchwanTGBattistiJMPorcellaSFRaffelSJSchrumpfME 2003 Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia species. J Bacteriol 185 1346 1356

42. YangZH 2007 PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24 1586 1591

43. LiangHZhouWLandweberLF 2006 SWAKK: a web server for detecting positive selection in proteins using a sliding window substitution rate analysis. Nucleic Acids Res 34 382 384

44. MudgettMBChesnokovaODahlbeckDClarkETRossierO 2000 Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci U S A 97 13324 13329

45. MunsonRSJrSasakiK 1993 Protein D, a putative immunoglobulin D-binding protein produced by Haemophilus influenzae, is glycerophosphodiester phosphodiesterase. J Bacteriol 175 4569 4571

46. JansonHCarl nBCervinAForsgrenAMagnusdottirAB 1999 Effects on the ciliated epithelium of protein D-producing and -nonproducing nontypeable Haemophilus influenzae in nasopharyngeal tissue cultures. J Infect Dis 180 737 746

47. AhrenILJansonHForsgrenARiesbeckK 2001 Protein D expression promotes the adherence and internalization of non-typeable Haemophilus influenzae into human monocytic cells. Microb Pathog 31 151 158

48. BaconRMPilgardMAJohnsonBJRaffelSJSchwanTG 2004 Glycerophosphodiester phosphodiesterase gene (glpQ) of Borrelia lonestari identified as a target for differentiating Borrelia species associated with hard ticks (Acari:Ixodidae). J Clin Microbiol 42 2326 2328

49. Van Der RestBRollandNBoissonAMFerroMBlignyR 2004 Identification and characterization of plant glycerophosphodiester phosphodiesterase. Biochem J 379 601 607

50. Van Der RestBBoissonAMGoutEBlignyRDouceR 2002 Glycerophosphocholine metabolism in higher plant cells: Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol 130 244 255

51. HayashiSIshiiTMatsunagaTTominagaRKuromoriT 2008 The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization. Plant Cell Physiol 49 1522 1535

52. MarieCBroughtonWJDeakinWJ 2001 Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4 336 342

53. CoombesBK 2009 Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends Microbiol 17 89 94

54. IniguezALDongYCarterHDAhmerBMMStoneJM 2005 Regulation of Enteric Endophytic Bacterial Colonization by Plant Defenses. Mol Plant Microbe Interact 18 169 178

55. OhH-SParkDHCollmerA 2010 Components of the Pseudomonas syringae type III secretion system can suppress and may elicit plant innate immunity.Molecular plant-microbe interactions: Mol Plant Microbe Interact 23 727 739

56. DanielsMJBarberCETurnerPCSawczycMKByrdeRJ 1984 Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3 3323 3328

57. FigurskiDHHelinskiDR 1979 Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc of the Natl Acad Sci U S A 76 1648 1652

58. PettersenEFGoddardTDHuangCCCouchGSGreenblattDM 2004 UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem 25 1605 1612

59. MetzMDahlbeckDMoralesCQAl SadyBClarkET 2005 The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant J 41 801 814

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#