Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Isolates
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.
Vyšlo v časopise:
Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Isolates. PLoS Pathog 7(7): e32767. doi:10.1371/journal.ppat.1002132
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002132
Souhrn
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.
Zdroje
1. FatmiMBCollmerASante IacobellisN 2008 Pseudomonas syringae Pathovars and Related Pathogens - Identification, Epidemiology, and Genomics. Springer 433
2. LinN-CMartinGB 2005 An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. MPMI 18 43 51
3. SarkarSFGordonJSMartinGBGuttmanDS 2006 Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174 1041 1056
4. LindebergMCunnacSCollmerA 2009 The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol Plant Pathol 10 767 775
5. MohrTJLiuHYanSMorrisCECastilloJA 2008 Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol 190 2858 2870
6. MorrisCESandsDCVannesteJLMontarryJOakleyB 2010 Inferring the Evolutionary History of the Plant Pathogen Pseudomonas syringae from Its Biogeography in Headwaters of Rivers in North America, Europe, and New Zealand. mBio 1 e00107-00110 e00107-00120
7. CunnacSLindebergMCollmerA 2009 Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12 53 60
8. CollmerABadelJLCharkowskiAODengWLFoutsDE 2000 Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A 97 8770 8777
9. MansfieldJW 2009 From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol Plant Pathol 10 721 734
10. MudgettMB 2005 New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56 509 531
11. GrantSRFisherEJChangJHMoleBMDanglJL 2006 Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60 425 449
12. JonesJDGDanglJL 2006 The plant immune system. Nature 444 323 329
13. ZhouJChaiJ 2008 Plant pathogenic bacterial type III effectors subdue host responses. Curr Opin Microbiol 11 179 185
14. KvitkoBHParkDHVelásquezACWeiC-FRussellAB 2009 Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors. PLoS Pathog 5 e1000388
15. FerrantePClarkeCRCavanaughKAMichelmoreRWBuonaurioR 2009 Contributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P. syringae pv. tabaci. Mol Plant Pathol 10 837 842
16. HwangMSHMorganRLSarkarSFWangPWGuttmanDS 2005 Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 71 5182 5191
17. TaylorJTeversonDAllenDPastor-CorralesM 1996 Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45 469
18. ClarkeCRCaiRStudholmeDJGuttmanDSVinatzerBA 2010 Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc Locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact 23 198 210
19. BullCTClarkeCRCaiRVinatzerBJardiniTM 2011 Multilocus Sequence Typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytopathology In press
20. GardanLShafikHBelouinSBrochRGrimontF 1999 DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49 Pt 2 469 478
21. BochJJoardarVGaoLRobertsonTLLimM 2002 Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol Microbiol 44 73 88
22. Zwiesler-VollickJPlovanich-JonesAENomuraKBandyopadhyaySJoardarV 2002 Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol Microbiol 45 1207 1218
23. ChangJHUrbachJMLawTFArnoldLWHuA 2005 A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc Natl Acad Sci U S A 102 2549 2554
24. GuttmanDSVinatzerBASarkarSFRanallMVKettlerG 2002 A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295 1722 1726
25. VinatzerBATeitzelGMLeeM-WJelenskaJHottonS 2006 The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 62 26 44
26. BuellCRJoardarVLindebergMSelengutJPaulsenIT 2003 The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100 10181 10186
27. FeilHFeilWSChainPLarimerFDiBartoloG 2005 Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102 11064 11069
28. JoardarVLindebergMJacksonRWSelengutJDodsonR 2005 Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187 6488 6498
29. FoutsDEAbramovitchRBAlfanoJRBaldoAMBuellCR 2002 Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci U S A 99 2275 2280
30. StudholmeDJIbanezSGMacLeanDDanglJLChangJH 2009 A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics 10 395
31. StavrinidesJMaWGuttmanDS 2006 Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2 e104
32. LindebergMMyersCRCollmerASchneiderDJ 2008 Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact 21 685 700
33. BenderCLAlarcón-ChaidezFGrossDC 1999 Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63 266 292
34. MelottoMUnderwoodWKoczanJNomuraKHeSY 2006 Plant stomata function in innate immunity against bacterial invasion. Cell 126 969 980
35. MilletYADannaCHClayNKSongnuanWSimonMD 2010 Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22 973 990
36. MaWDongFFTStavrinidesJGuttmanDS 2006 Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2 e209
37. AlmeidaNFYanSLindebergMStudholmeDJSchneiderDJ 2009 A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 22 52 62
38. QiMWangDBradleyCAZhaoY 2011 Genome Sequence Analyses of Pseudomonas savastanoi pv. glycinea and Subtractive Hybridization-Based Comparative Genomics with Nine Pseudomonads. PLoS ONE 6 e16451
39. Rodríguez-PalenzuelaPMatasIMMurilloJLópez-SolanillaEBardajiL 2010 Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 12 1604 1620
40. GreenSStudholmeDJLaueBEDoratiFLovellH 2010 Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE 5 e10224
41. ReinhardtJABaltrusDANishimuraMTJeckWRJonesCD 2009 De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19 294 305
42. SilbyMCerdeño-TárragaAVernikosGGiddensSJacksonR 2009 Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10 R51
43. PaulsenITPressCMRavelJKobayashiDYMyersGSA 2005 Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23 873 878
44. NelsonKEWeinelCPaulsenITDodsonRJHilbertH 2002 Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4 799 808
45. VivianAMurilloJJacksonRW 2001 The roles of plasmids in phytopathogenic bacteria: mobile arsenals? Microbiology 147 763 780
46. BackertSMeyerTF 2006 Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9 207 217
47. HubberARoyCR 2010 Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26 261 283
48. LindebergMStavrinidesJChangJHAlfanoJRCollmerA 2005 Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol Plant Microbe Interact 18 275 282
49. AlfanoJRCharkowskiAODengWLBadelJLPetnicki-OcwiejaT 2000 The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97 4856 4861
50. TsiamisGMansfieldJWHockenhullRJacksonRWSesmaA 2000 Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 19 3204 3214
51. OngLEInnesRW 2006 AvrB mutants lose both virulence and avirulence activities on soybean and Arabidopsis. Mol Microbiol 60 951 962
52. KeithLWBoydCKeenNTPartridgeJE 1997 Comparison of avrD alleles from Pseudomonas syringae pv. glycinea. Mol Plant Microbe Interact 10 416 422
53. SorensenKNKimKHTakemotoJY 1998 PCR Detection of Cyclic Lipodepsinonapeptide-Producing Pseudomonas syringae pv. syringae and Similarity of Strains. Appl Environ Microbiol 64 226 230
54. YanSLiuHMohrTJJenretteJChiodiniR 2008 Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Appl Environ Microbiol 74 3171 3181
55. NomuraKDebroySLeeYHPumplinNJonesJ 2006 A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313 220 223
56. BadelJNomuraKBandyopadhyaySShimizuRCollmerA 2003 Pseudomonas syringae pv. tomato DC 3000 HopPtoM(CEL ORF 3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol Microbiol 49 1239 1251
57. DebroySThilmonyRKwackY-BNomuraKHeSY 2004 A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101 9927 9932
58. XingWZouYLiuQLiuJLuoX 2007 The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449 243 247
59. ZipfelCRathjenJP 2008 Plant immunity: AvrPto targets the frontline. Curr Biol 18 R218 220
60. ChangJHRathjenJPBernalAJStaskawiczBJMichelmoreRW 2000 avrPto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pto or Prf. Mol Plant Microbe Interact 13 568 571
61. RathjenJPChangJHStaskawiczBJMichelmoreRW 1999 Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. EMBO J 18 3232 3240
62. de VriesJSAndriotisVMEWuAJRathjenJP 2006 Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. Plant J 45 31 45
63. ChangJHTobiasCMStaskawiczBMichelmoreRW 2001 Functional studies of the bacterial avirulence protein AvrPto by mutational analysis. Mol Plant Microbe Interact 14 451 459
64. ShanLHePZhouJTangX 2000 A cluster of mutations disrupt the avirulence but not the virulence functions of AvrPto. Mol Plant Microbe Interact 13 592 598
65. WulfJPascuzziPEFahmyAMartinGBNicholsonLK 2004 The Solution Structure of Type III Effector Protein AvrPto Reveals Conformational and Dynamic Features Important for Plant Pathogenesis. Structure 12 1257 1268
66. KunkeawSTanSCoakerG 2010 Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. Mol Plant Microbe Interact 23 415 424
67. TouchonMHoedeCTenaillonOBarbeVBaeriswylS 2009 Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5 e1000344
68. HarrisonPWLowerRPJKimNKDYoungJPW 2010 Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18 141 148
69. MunkvoldKRRussellABKvitkoBHCollmerA 2009 Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato. Mol Plant Microbe Interact 22 1341 1355
70. JelenskaJYaoNVinatzerBAWrightCMBrodskyJL 2007 A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 17 499 508
71. XiangTZongNZouYWuYZhangJ 2008 Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18 74 80
72. ShanLHePLiJHeeseAPeckSC 2008 Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4 17 27
73. NtoukakisVMucynTSGimenez-IbanezSChapmanHCGutierrezJR 2009 Host inhibition of a bacterial virulence effector triggers immunity to infection. Science 324 784 787
74. BollerT 2008 Stabbing in the BAK–an original target for avirulence genes of plant pathogens. Cell Host Microbe 4 5 7
75. SchellenbergBRamelCDudlerR 2010 Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol Plant Microbe Interact 23 1287 1293
76. WeingartHUllrichHGeiderKVölkschB 2001 The Role of Ethylene Production in Virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology 91 511 518
77. LinN-CMartinGB 2007 Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse Pseudomonas syringae pathovars to infect tomato. Mol Plant Microbe Interact 20 806 815
78. KuoCHOchmanH 2010 The extinction dynamics of bacterial pseudogenes. PLoS Genet 6 e1001050
79. HajriABrinCHunaultGLardeuxFLemaireC 2009 A “repertoire for repertoire” hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLoS ONE 4 e6632
80. StevensCBennettMAAthanassopoulosETsiamisGTaylorJD 1998 Sequence variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Mol Microbiol 29 165 177
81. BullCTManceauCLydonJKongHVinatzerBA 2010 Pseudomonas cannabina pv. cannabina pv. nov., and Pseudomonas cannabina pv. alisalensis (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species Pseudomonas cannabina (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999. Syst Appl Microbiol 33 105 115
82. StavrinidesJGuttmanDS 2004 Nucleotide sequence and evolution of the five-plasmid complement of the phytopathogen Pseudomonas syringae pv. maculicola ES4326. J Bacteriol 186 5101 5115
83. ChainPSGGrafhamDVFultonRSFitzgeraldMGHostetlerJ 2009 Genomics. Genome project standards in a new era of sequencing. Science 326 236 237
84. HernandezDFrançoisPFarinelliLOsteråsMSchrenzelJ 2008 De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18 802 809
85. DoCB 2005 ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 15 330 340
86. StamatakisA 2004 RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21 456 463
87. StamatakisA 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690
88. KanehisaMGotoS 2000 KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28 27 30
89. Marchler-BauerA 2003 CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31 383 387
90. SalzbergSLSommerDDPuiuDLeeVT 2008 Gene-boosted assembly of a novel bacterial genome from very short reads. PLoS Comput Biol 4 e1000186
91. VinatzerBAJelenskaJGreenbergJT 2005 Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25. Mol Plant Microbe Interact 18 877 888
92. WernerssonRPedersenAG 2003 RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31 3537 3539
93. VoinnetORivasSMestrePBaulcombeD 2003 An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33 949 956
94. KovachMEPhillipsRWElzerPHRoopRM2ndPetersonKM 1994 pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16 800 802
95. LindowSE 1985 Ecology of Pseudomonas syringae relevant to the field use of Ice- deletion mutants constructed in vitro for plant frost control. HalvorsonHOPramerDRogulM Engineered organisms in the environment: scientific issues 23 35 Washington, D.C.
96. ZumaqueroAMachoAPRufiánJSBeuzónCR 2010 Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in the interaction with the plant. J Bacteriol 192 4474 4488
97. HuangDWShermanBTLempickiRA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4 44 57
98. DelanoWL 2008 The PyMOL Molecular Graphics System DeLano Scientific LLC, Palo Alto, CA USA
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 7
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Requires Glycerol for Maximum Fitness During The Tick Phase of the Enzootic Cycle
- Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens
- The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations
- “Persisters”: Survival at the Cellular Level