#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Regulation of Sulfur Metabolism in


Mycobacterium tuberculosis (Mtb) has evolved into a highly successful human pathogen. It deftly subverts the bactericidal mechanisms of alveolar macrophages, ultimately inducing granuloma formation and establishing long-term residence in the host. These hallmarks of Mtb infection are facilitated by the metabolic adaptation of the pathogen to its surrounding environment and the biosynthesis of molecules that mediate its interactions with host immune cells. The sulfate assimilation pathway of Mtb produces a number of sulfur-containing metabolites with important contributions to pathogenesis and survival. This pathway is regulated by diverse environmental cues and regulatory proteins that mediate sulfur transactions in the cell. Here, we discuss the transcriptional and biochemical mechanisms of sulfur metabolism regulation in Mtb and potential small molecule regulators of the sulfate assimilation pathway that are collectively poised to aid this intracellular pathogen in its expert manipulation of the host. From this global analysis, we have identified a subset of sulfur-metabolizing enzymes that are sensitive to multiple regulatory cues and may be strong candidates for therapeutic intervention.


Vyšlo v časopise: The Regulation of Sulfur Metabolism in. PLoS Pathog 7(7): e32767. doi:10.1371/journal.ppat.1002036
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002036

Souhrn

Mycobacterium tuberculosis (Mtb) has evolved into a highly successful human pathogen. It deftly subverts the bactericidal mechanisms of alveolar macrophages, ultimately inducing granuloma formation and establishing long-term residence in the host. These hallmarks of Mtb infection are facilitated by the metabolic adaptation of the pathogen to its surrounding environment and the biosynthesis of molecules that mediate its interactions with host immune cells. The sulfate assimilation pathway of Mtb produces a number of sulfur-containing metabolites with important contributions to pathogenesis and survival. This pathway is regulated by diverse environmental cues and regulatory proteins that mediate sulfur transactions in the cell. Here, we discuss the transcriptional and biochemical mechanisms of sulfur metabolism regulation in Mtb and potential small molecule regulators of the sulfate assimilation pathway that are collectively poised to aid this intracellular pathogen in its expert manipulation of the host. From this global analysis, we have identified a subset of sulfur-metabolizing enzymes that are sensitive to multiple regulatory cues and may be strong candidates for therapeutic intervention.


Zdroje

1. World Health Organization Tuberculosis (TB). Available: www.who.int/tb/en/

2. GinsbergAMSpigelmanM 2007 Challenges in tuberculosis drug research and development. Nat Med 13 290 294

3. LinPLFlynnJL 2010 Understanding latent tuberculosis: a moving target. J Immunol 185 15 22

4. RussellDG 2007 Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5 39 47

5. RussellDG 2001 Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2 569 577

6. BhaveDPMuseWB3rdCarrollKS 2007 Drug targets in mycobacterial sulfur metabolism. Infect Disord Drug Targets 7 140 158

7. SchelleMWBertozziCR 2006 Sulfate metabolism in mycobacteria. Chembiochem 7 1516 1524

8. GangadharamPRCohnMLMiddlebrookG 1963 Infectivity, pathogenicity and sulpholipid fraction of some Indian and British strains of tubercle bacilli. Tubercle 44 452 455

9. MougousJDSenaratneRHPetzoldCJJainMLeeDH 2006 A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103 4258 4263

10. GilleronMStengerSMazorraZWittkeFMariottiS 2004 Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199 649 659

11. MougousJDGreenREWilliamsSJBrennerSEBertozziCR 2002 Sulfotransferases and sulfatases in mycobacteria. Chem Biol 9 767 776

12. SenaratneRHDe SilvaADWilliamsSJMougousJDReaderJR 2006 5′-Adenosinephosphosulphate reductase (CysH) protects Mycobacterium tuberculosis against free radicals during chronic infection phase in mice. Mol Microbiol 59 1744 1753

13. NewtonGLArnoldKPriceMSSherrillCDelcardayreSB 1996 Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178 1990 1995

14. BuchmeierNANewtonGLKoledinTFaheyRC 2003 Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47 1723 1732

15. JothivasanVKHamiltonCJ 2008 Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 25 1091 1117

16. RawatMJohnsonCCadizVAv-GayY 2007 Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis. Biochem Biophys Res Commun 363 71 76

17. WilliamsSJSenaratneRHMougousJDRileyLWBertozziCR 2002 5′-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 277 32606 32615

18. SunMAndreassiJL2ndLiuSPintoRTriccasJA 2005 The trifunctional sulfate-activating complex (SAC) of Mycobacterium tuberculosis. J Biol Chem 280 7861 7866

19. CarrollKSGaoHChenHStoutCDLearyJA 2005 A conserved mechanism for sulfonucleotide reduction. PLoS Biol 3 e250 doi:10.1371/journal.pbio.0030250

20. BoshoffHIMyersTGCoppBRMcNeilMRWilsonMA 2004 The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279 40174 40184

21. SchnappingerDEhrtSVoskuilMILiuYManganJA 2003 Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198 693 704

22. PintoRTangQXBrittonWJLeyhTSTriccasJA 2004 The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. Microbiology 150 1681 1686

23. VoskuilMIViscontiKC Schoolnik GK 2004 Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 84 218 227

24. RustadTRHarrellMILiaoRShermanDR 2008 The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE 3 e1502 doi:10.1371/journal.pone.0001502

25. FontanPArisVGhannySSoteropoulosPSmithI 2007 Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 76 717 725

26. HampshireTSonejiSBaconJJamesBWHindsJ 2004 Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis (Edinb) 84 228 238

27. BettsJCLukeyPTRobbLCMcAdamRADuncanK 2002 Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43 717 731

28. ManganelliRVoskuilMI Schoolnik GK, Smith I 2001 The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol 41 423 437

29. ProvvediRBoldrinFFalcianiFPaluGManganelliR 2009 Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology 155 1093 1102

30. RohdeKYatesRMPurdyGERussellDG 2007 Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219 37 54

31. AppelbergR 2006 Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 79 1117 1128

32. PintoRHarrisonJSHsuTJacobsWRJrLeyhTS 2007 Sulfite reduction in mycobacteria. J Bacteriol 189 6714 6722

33. O'LearySEJurgensonCTEalickSEBegleyTP 2008 O-phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 47 11606 11615

34. SchnellRSchneiderG 2010 Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun 396 33 38

35. BoshoffHIMizrahiVBarryCE3rd 2002 Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J Bacteriol 184 2167 2172

36. CriddleDNGilliesSBaumgartner-WilsonHKJaffarMChinjeEC 2006 Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281 40485 40492

37. TurnbullALSuretteMG 2008 L-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology 154 3410 3419

38. HulloMFMartin-VerstraeteISoutourinaO 2010 Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis. FEMS Microbiol Lett 309 201 207

39. SoutourinaODubracSPoupelOMsadekTMartin-VerstraeteI 2010 The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response. PLoS Pathog 6 e1000894 doi:10.1371/journal.ppat.1000894

40. MillerCCRawatMJohnsonTAv-GayY 2007 Innate protection of Mycobacterium smegmatis against the antimicrobial activity of nitric oxide is provided by mycothiol. Antimicrob Agents Chemother 51 3364 3366

41. NewtonGLBuchmeierNFaheyRC 2008 Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72 471 494

42. VilchezeCAv-GayYAttarianRLiuZHazbonMH 2008 Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69 1316 1329

43. MehraSKaushalD 2009 Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor sigmaH. J Bacteriol 191 3965 3980

44. ParkSTKangCMHussonRN 2008 Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105 13105 13110

45. ParkJHRoeJH 2008 Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor. Mol Microbiol 68 861 870

46. KredichNM 1992 The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol 6 2747 2753

47. Iwanicka-NowickaRHryniewiczMM 1995 A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166 11 17

48. StecEWitkowska-ZimnyMHryniewiczMMNeumannPWilkinsonAJ 2006 Structural basis of the sulphate starvation response in E. coli: crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator. J Mol Biol 364 309 322

49. MougousJDPetzoldCJSenaratneRHLeeDHAkeyDL 2004 Identification, function and structure of the mycobacterial sulfotransferase that initiates Sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11 721 729

50. BurnsKEBaumgartSDorresteinPCZhaiHMcLaffertyFW 2005 Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. J Am Chem Soc 127 11602 11603

51. AgrenDSchnellROehlmannWSinghMSchneiderG 2008 Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria. J Biol Chem 283 31567 31574

52. RuckertCMilseJAlbersmeierAKochDJPuhlerA 2008 The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 9 483

53. WooffEMichellSLGordonSVChambersMABardarovS 2002 Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol Microbiol 43 653 663

54. ZolotarevASUnnikrishnanMShmuklerBEClarkJSVandorpeDH 2008 Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Mol Integr Physiol 149 255 266

55. BojarovaPWilliamsSJ 2008 Sulfotransferases, sulfatases and formylglycine-generating enzymes: a sulfation fascination. Curr Opin Chem Biol 12 573 581

56. CarlsonBLBallisterERSkordalakesEKingDSBreidenbachMA 2008 Function and structure of a prokaryotic formylglycine generating enzyme. J Biol Chem 283 20117 20125

57. HossainMMKawarabayasiYKimuraMKakutaY 2009 Expression and functional analysis of a predicted AtsG arylsulphatase identified from Mycobacterium tuberculosis genomic data. J Biochem 146 767 769

58. HatziosSKIavaroneATBertozziCR 2008 Rv2131c from Mycobacterium tuberculosis is a CysQ 3′-phosphoadenosine-5′-phosphatase. Biochemistry 47 5823 5831

59. PiNHoangMBGaoHMougousJDBertozziCR 2005 Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Anal Biochem 341 94 104

60. NeuwaldAFKrishnanBRBrikunIKulakauskasSSuziedelisK 1992 cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol 174 415 425

61. ZhangJBiswasI 2009 3′-Phosphoadenosine-5′-phosphate phosphatase activity is required for superoxide stress tolerance in Streptococcus mutans. J Bacteriol 191 4330 4340

62. UngKSAv-GayY 2006 Mycothiol-dependent mycobacterial response to oxidative stress. FEBS Lett 580 2712 2716

63. RodriguezGMSmithI 2003 Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47 1485 1494

64. KrawczykJKohlTAGoesmannAKalinowskiJBaumbachJ 2009 From Corynebacterium glutamicum to Mycobacterium tuberculosis--towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet. Nucleic Acids Res 37 e97

65. FanFVettingMWFrantomPABlanchardJS 2009 Structures and mechanisms of the mycothiol biosynthetic enzymes. Curr Opin Chem Biol 13 451 459

66. BykowskiTvan der PloegJRIwanicka-NowickaRHryniewiczMM 2002 The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′-phosphosulphate (APS) as a signaling molecule for sulphate excess. Mol Microbiol 43 1347 1358

67. NewtonGLFaheyRC 2008 Regulation of mycothiol metabolism by sigma(R) and the thiol redox sensor anti-sigma factor RsrA. Mol Microbiol 68 805 809

68. BuchmeierNANewtonGLFaheyRC 2006 A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188 6245 6252

69. MougousJDLeeDHHubbardSCSchelleMWVocadloDJ 2006 Molecular basis for G protein control of the prokaryotic ATP sulfurylase. Mol Cell 21 109 122

70. RamanKYeturuKChandraN 2008 targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2 109

71. SchnellROehlmannWSinghMSchneiderG 2007 Structural insights into catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis. Crystal structures of the enzyme alpha-aminoacrylate intermediate and an enzyme-inhibitor complex. J Biol Chem 282 23473 23481

72. VoskuilMI 2004 Mycobacterium tuberculosis gene expression during environmental conditions associated with latency. Tuberculosis (Edinb) 84 138 143

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#