#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Conservative Sex and the Benefits of Transformation in


Natural transformation has significant effects on bacterial genome evolution, but the evolutionary factors maintaining this mode of bacterial sex remain uncertain. Transformation is hypothesized to have both positive and negative evolutionary effects on bacteria. It can facilitate adaptation by combining beneficial mutations into a single individual, or reduce the mutational load by exposing deleterious alleles to natural selection. Alternatively, it may expose transformed cells to damaged or otherwise mutated environmental DNA and is energetically expensive. Here, we examine the long-term effects of transformation in the naturally competent species Streptococcus pneumoniae by evolving populations of wild-type and competence-deficient strains in chemostats for 1000 generations. Half of these populations were exposed to periodic mild stress to examine context-dependent benefits of transformation. We find that competence reduces fitness gain under benign conditions; however, these costs are reduced in the presence of periodic stress. Using whole genome re-sequencing, we show that competent populations fix fewer new mutations and that competence prevents the emergence of mutators. Our results show that during evolution in benign conditions competence helps maintain genome stability but is evolutionary costly; however, during periods of stress this same conservativism enables cells to retain fitness in the face of new mutations, showing for the first time that the benefits of transformation are context dependent.


Vyšlo v časopise: Conservative Sex and the Benefits of Transformation in. PLoS Pathog 9(11): e32767. doi:10.1371/journal.ppat.1003758
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003758

Souhrn

Natural transformation has significant effects on bacterial genome evolution, but the evolutionary factors maintaining this mode of bacterial sex remain uncertain. Transformation is hypothesized to have both positive and negative evolutionary effects on bacteria. It can facilitate adaptation by combining beneficial mutations into a single individual, or reduce the mutational load by exposing deleterious alleles to natural selection. Alternatively, it may expose transformed cells to damaged or otherwise mutated environmental DNA and is energetically expensive. Here, we examine the long-term effects of transformation in the naturally competent species Streptococcus pneumoniae by evolving populations of wild-type and competence-deficient strains in chemostats for 1000 generations. Half of these populations were exposed to periodic mild stress to examine context-dependent benefits of transformation. We find that competence reduces fitness gain under benign conditions; however, these costs are reduced in the presence of periodic stress. Using whole genome re-sequencing, we show that competent populations fix fewer new mutations and that competence prevents the emergence of mutators. Our results show that during evolution in benign conditions competence helps maintain genome stability but is evolutionary costly; however, during periods of stress this same conservativism enables cells to retain fitness in the face of new mutations, showing for the first time that the benefits of transformation are context dependent.


Zdroje

1. OchmanH, LawrenceJG, GroismanEA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.

2. VosM (2009) Why do bacteria engage in homologous recombination? Trends in Microbiology 17: 226–232.

3. RedfieldRJ (2001) Do bacteria have sex? Nature Reviews: Genetics 2: 634–639.

4. MichodRE, BernsteinH, NedelcuAM (2008) Adaptive value of sex in microbial pathogens. Infection, Genetics and Evolution 8: 267–285.

5. EshelI, FeldmanMW (1970) On the evolutionary effect of recombination. Theoretical Population Biology 1: 88–100.

6. LevinBR (1981) Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99: 1–23.

7. GogartenJP, DoolittleWF, LawrenceJG (2002) Prokaryotic evolution in light of gene transfer. Molecular Biology and Evolution 19: 2226–2238.

8. MullerHJ (1932) Some genetic aspects of sex. American Naturalist 66: 118–138.

9. Fisher RA (1930) The genetical theory of natural selection. Oxford: Oxford University Press.

10. FlynnKM, CooperTF, MooreFBG, CooperVS (2013) The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genetics 9: e1003426.

11. KhanAI, DinhDM, SchneiderD, LenskiRE, CooperTF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332: 1193–1196.

12. RedfieldRJ (1988) Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119: 213–221.

13. HaighJ (1978) The accumulation of deleterious genes in a population–Muller's Ratchet. Theoretical Population Biology 14: 251–267.

14. MullerHJ (1964) The relation of recombination to mutational advance. Mutation Research 106: 2–9.

15. KondrashovAS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

16. TreangenTJ, AmburOH, TonjumT, RochaEP (2008) The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome biology 9: R60.

17. BaltrusDA, GuilleminK, PhillipsPC (2008) Natural transformation increases the rate of adaptation in the human pathogen Helicobacter pylori. Evolution 62: 39–49.

18. BacherJM, MetzgarD, de Crecy-LagardV (2006) Rapid evolution of diminished transformability in Acinetobacter baylyi. Journal of Bacteriology 188: 8534–8542.

19. GrayJC, GoddardMR (2012) Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evolutionary Biology 12: 43.

20. PrudhommeM, AttaiechL, SanchezG, MartinB, ClaverysJP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313: 89–92.

21. CornejoOE, RozenDE, MayRM, LevinBR (2008) Oscillations in continuous culture populations of Streptococcus pneumoniae: population dynamics and the evolution of clonal suicide. Proceedings of the Royal Society of London, Series B: Biological Sciences 276: 999–1008.

22. EngelmoerDJP (2012) The evolution of natural competence in Streptococcus pneumoniae. Faculty of Life Sciences PhD 152.

23. TravisanoM, LenskiRE (1996) Long-term experimental evolution in Escherichia coli .4. Targets of selection and the specificity of adaptation. Genetics 143: 15–26.

24. CharpentierX, PolardP, ClaverysJP (2012) Induction of competence for genetic transformation by antibiotics: convergent evolution of stress responses in distant bacterial species lacking SOS? Current Opinion in Microbiology 15: 570–576.

25. HorstJP, WuTH, MarinusMG (1999) Escherichia coli mutator genes. Trends in Microbiology 7: 29–36.

26. BjedovI, TenaillonO, GerardB, SouzaV, DenamurE, et al. (2003) Stress-induced mutagenesis in bacteria. Science 300: 1404–1409.

27. HillerNL, AhmedA, PowellE, MartinDP, EutseyR, et al. (2010) Generation of Genic Diversity among Streptococcus pneumoniae Strains via Horizontal Gene Transfer during a Chronic Polyclonal Pediatric Infection. Plos Pathogens 6: e1001108.

28. DowsonCG, HutchisonA, BranniganJA, GeorgeRC, HansmanD, et al. (1989) Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the United States of America 86: 8842–8846.

29. CoffeyTJ, EnrightMC, DanielsM, MoronaJK, MoronaR, et al. (1998) Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Molecular Microbiology 27: 73–83.

30. WielgossS, BarrickJE, TenaillonO, CruveillerS, Chane-Woon-MingB, et al. (2011) Mutation rate inferred form synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3: Genes, Genomes, Genetics 1(3): 183–186.

31. BjorkholmB, SjolundM, FalkPG, BergOG, EngstrandL, et al. (2001) Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America 98: 14607–14612.

32. OliverA, BaqueroF, CantonR, CampoP, BlazquezJ (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–1253.

33. WatsonME, SmithAL, BurnsJL (2004) Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology-Sgm 150: 2947–2958.

34. TenaillonO, Le NagardH, GodelleB, TaddeiF (2000) Mutators and sex in bacteria: Conflict between adaptive strategies. Proceedings of the National Academy of Sciences, USA 97: 10465–10470.

35. CooperTF, LenskiRE, ElenaSF (2005) Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex. Proceedings of the Royal Society of London Series B: Biological Sciences 272: 311–317.

36. SzafraniecK, BortsRH, KoronaR (2001) Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 98: 1107–1112.

37. MajewskiJ, ZawadzkiP, PickerillP, CohanFM, DowsonCG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. Journal of Bacteriology 182: 1016–1023.

38. MaughanH, RedfieldRJ (2009) Extensive variation in natural competence in Haemophilus influenzae. Evolution 63: 1852–1866.

39. DuitmanEH, WyczawskiD, BovenLG, VenemaG, KuipersOP, et al. (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Applied and Environmental Microbiology 73: 3490–3496.

40. LiYH, LauPC, LeeJH, EllenRP, CvitkovitchDG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. Journal of Bacteriology 183: 897–908.

41. PozziG, MasalaL, IannelliF, ManganelliR, HavarsteinLS, et al. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. Journal of Bacteriology 178: 6087–6090.

42. IannelliF, OggioniMR, PozziG (2005) Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. FEMS Microbiology Letters 252: 321–326.

43. EvansBA, RozenDE (2013) Significant variation in transformation frequency in Streptococcus pneumoniae. ISME Journal 7(4): 791–9.

44. StevensKE, ChangD, ZwackEE, SebertME (2011) Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors. MBio 2: e00071-11.

45. SteinmoenH, KnutsenE, HavarsteinLS (2002) Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proceedings of the National Academy of Sciences, USA 99: 7681–7686.

46. SteinmoenH, TeigenA, HavarsteinLS (2003) Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. Journal of Bacteriology 185: 7176–7183.

47. LenskiRE, RoseMR, SimpsonSC, TadlerSC (1991) long-term experimental evolution in Escherichia coli .1. Adaptation and divergence during 2,000 generations. American Naturalist 138: 1315–1341.

48. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory.

49. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al.. (2011) Geneious v5.4. http://wwwgeneiouscom.

50. HarrisSR, FeilEJ, HoldenMTG, QuailMA, NickersonEK, et al. (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327: 469–474.

51. CroucherNJ, HarrisSR, FraserC, QuailMA, BurtonJ, et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434.

52. BlankenbergD, Von KusterG, CoraorN, AnandaG, LazarusR, et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology Chapter 19: Unit 19 10 11–21.

53. GoecksJ, NekrutenkoA, TaylorJ, TeamG (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology 11: R86.

54. SchneiderKL, PollardKS, BaertschR, PohlA, LoweTM (2006) The UCSC Archaeal Genome Browser. Nucleic Acids Research 34: D407–410.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#