Infectious Prions Accumulate to High Levels in Non Proliferative C2C12 Myotubes
Prion diseases are driven by the strain-specific, template-dependent transconformation of the normal cellular prion protein (PrPC) into a disease specific isoform PrPSc. Cell culture models of prion infection generally use replicating cells resulting in lower levels of prion accumulation compared to animals. Using non-replicating cells allows the accumulation of higher levels of PrPSc and, thus, greater amounts of infectivity. Here, we infect non-proliferating muscle fiber myotube cultures prepared from differentiated myoblasts. We demonstrate that prion-infected myotubes generate substantial amounts of PrPSc and that the level of infectivity produced in these post-mitotic cells, 105.5 L.D.50/mg of total protein, approaches that observed in vivo. Exposure of the myotubes to different mouse-adapted agents demonstrates strain-specific replication of infectious agents. Mouse-derived myotubes could not be infected with hamster prions suggesting that the species barrier effect is intact. We suggest that non-proliferating myotubes will be a valuable model system for generating infectious prions and for screening compounds for anti-prion activity.
Vyšlo v časopise:
Infectious Prions Accumulate to High Levels in Non Proliferative C2C12 Myotubes. PLoS Pathog 9(11): e32767. doi:10.1371/journal.ppat.1003755
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003755
Souhrn
Prion diseases are driven by the strain-specific, template-dependent transconformation of the normal cellular prion protein (PrPC) into a disease specific isoform PrPSc. Cell culture models of prion infection generally use replicating cells resulting in lower levels of prion accumulation compared to animals. Using non-replicating cells allows the accumulation of higher levels of PrPSc and, thus, greater amounts of infectivity. Here, we infect non-proliferating muscle fiber myotube cultures prepared from differentiated myoblasts. We demonstrate that prion-infected myotubes generate substantial amounts of PrPSc and that the level of infectivity produced in these post-mitotic cells, 105.5 L.D.50/mg of total protein, approaches that observed in vivo. Exposure of the myotubes to different mouse-adapted agents demonstrates strain-specific replication of infectious agents. Mouse-derived myotubes could not be infected with hamster prions suggesting that the species barrier effect is intact. We suggest that non-proliferating myotubes will be a valuable model system for generating infectious prions and for screening compounds for anti-prion activity.
Zdroje
1. LeblancP, AlaisS, Porto-CarreiroI, LehmannS, GrassiJ, et al. (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25: 2674–2685.
2. AlaisS, SimoesS, BaasD, LehmannS, RaposoG, et al. (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100: 603–615.
3. BuelerH, AguzziA, SailerA, GreinerRA, AutenriedP, et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347.
4. EnariM, FlechsigE, WeissmannC (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci U S A 98: 9295–9299.
5. SafarJG, DeArmondSJ, KociubaK, DeeringC, DidorenkoS, et al. (2005) Prion clearance in bigenic mice. J Gen Virol 86: 2913–2923.
6. WeissmannC, LiJ, MahalSP, BrowningS (2011) Prions on the move. EMBO Rep 12: 1109–1117.
7. HaigDA, PattisonIH (1967) In-vitro growth of pieces of brain from scrapie-affected mice. J Pathol Bacteriol 93: 724–727.
8. ClarkeMC, HaigDA (1970) Evidence for the multiplication of scrapie agent in cell culture. Nature 225: 100–101.
9. HaigDA, ClarkeMC (1971) Multiplication of the scrapie agent. Nature 234: 106–107.
10. ClarkeMC, MillsonGC (1976) Infection of a cell line of mouse L fibroblasts with scrapie agent. Nature 261: 144–145.
11. VorbergI, RainesA, StoryB, PriolaSA (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis 189: 431–439.
12. ViletteD, AndreolettiO, ArcherF, MadelaineMF, VilotteJL, et al. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98: 4055–4059.
13. MarkovitsP, DauthevilleC, DormontD, DianouxL, LatarjetR (1983) In vitro propagation of the scrapie agent. I. Transformation of mouse glia and neuroblastoma cells after infection with the mouse-adapted scrapie strain c-506. Acta Neuropathol 60: 75–80.
14. RoikhelVM, FokinaGI, LisakVM, KondakovaLI, KorolevMB, et al. (1987) Persistence of the scrapie agent in glial cells from rat Gasserian ganglion. Acta Virol 31: 36–42.
15. IwamaruY, TakenouchiT, OgiharaK, HoshinoM, TakataM, et al. (2007) Microglial cell line established from prion protein-overexpressing mice is susceptible to various murine prion strains. J Virol 81: 1524–1527.
16. RubensteinR, CarpRI, CallahanSM (1984) In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J Gen Virol 65(Pt 12): 2191–2198.
17. FolletJ, Lemaire-VieilleC, Blanquet-GrossardF, Podevin-DimsterV, LehmannS, et al. (2002) PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76: 2434–2439.
18. SchatzlHM, LaszloL, HoltzmanDM, TatzeltJ, DeArmondSJ, et al. (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71: 8821–8831.
19. DronM, Dandoy-DronF, Farooq SalamatMK, LaudeH (2009) Proteasome inhibitors promote the sequestration of PrPSc into aggresomes within the cytosol of prion-infected CAD neuronal cells. J Gen Virol 90: 2050–2060.
20. RaceRE, FadnessLH, ChesebroB (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol 68(Pt 5): 1391–1399.
21. ButlerDA, ScottMR, BockmanJM, BorcheltDR, TaraboulosA, et al. (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62: 1558–1564.
22. NishidaN, HarrisDA, ViletteD, LaudeH, FrobertY, et al. (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74: 320–325.
23. RaceRE, CaugheyB, GrahamK, ErnstD, ChesebroB (1988) Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J Virol 62: 2845–2849.
24. BosquePJ, PrusinerSB (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74: 4377–4386.
25. CourageotMP, DaudeN, NonnoR, PaquetS, Di BariMA, et al. (2008) A cell line infectible by prion strains from different species. J Gen Virol 89: 341–347.
26. LawsonVA, VellaLJ, StewartJD, SharplesRA, KlemmH, et al. (2008) Mouse-adapted sporadic human Creutzfeldt-Jakob disease prions propagate in cell culture. Int J Biochem Cell Biol 40: 2793–2801.
27. BianJ, NapierD, KhaychuckV, AngersR, GrahamC, et al. (2010) Cell-based quantification of chronic wasting disease prions. J Virol 84: 8322–8326.
28. GhaemmaghamiS, PhuanPW, PerkinsB, UllmanJ, MayBC, et al. (2007) Cell division modulates prion accumulation in cultured cells. Proc Natl Acad Sci U S A 104: 17971–17976.
29. YaffeD, SaxelO (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270: 725–727.
30. BrownDR, SchmidtB, GroschupMH, KretzschmarHA (1998) Prion protein expression in muscle cells and toxicity of a prion protein fragment. Eur J Cell Biol 75: 29–37.
31. StellaR, MassiminoML, SandriM, SorgatoMC, BertoliA (2010) Cellular prion protein promotes regeneration of adult muscle tissue. Mol Cell Biol 30: 4864–4876.
32. BosquePJ, RyouC, TellingG, PeretzD, LegnameG, et al. (2002) Prions in skeletal muscle. Proc Natl Acad Sci U S A 99: 3812–3817.
33. AngersRC, BrowningSR, SewardTS, SigurdsonCJ, MillerMW, et al. (2006) Prions in skeletal muscles of deer with chronic wasting disease. Science 311: 1117.
34. DlakicWM, GriggE, BessenRA (2007) Prion infection of muscle cells in vitro. J Virol 81: 4615–4624.
35. ChasseigneauxS, PastoreM, Britton-DavidianJ, ManieE, SternMH, et al. (2008) Genetic heterogeneity versus molecular analysis of prion susceptibility in neuroblasma N2a sublines. Arch Virol 153: 1693–1702.
36. BenjaminiY, HochbergY (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.
37. HwangD, LeeIY, YooH, GehlenborgN, ChoJH, et al. (2009) A systems approach to prion disease. Mol Syst Biol 5: 252.
38. GehlenborgN, HwangD, LeeIY, YooH, BaxterD, et al. (2009) The Prion Disease Database: a comprehensive transcriptome resource for systems biology research in prion diseases. Database (Oxford) 2009: bap011.
39. CaugheyB, RaymondGJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67: 643–650.
40. BirkettCR, HennionRM, BembridgeDA, ClarkeMC, ChreeA, et al. (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J 20: 3351–3358.
41. DiringerH, EhlersB (1991) Chemoprophylaxis of scrapie in mice. J Gen Virol 72(Pt 2): 457–460.
42. RainovNG, TsuboiY, Krolak-SalmonP, VighettoA, Doh-UraK (2007) Experimental treatments for human transmissible spongiform encephalopathies: is there a role for pentosan polysulfate? Expert Opin Biol Ther 7: 713–726.
43. WeissmannC (2004) The state of the prion. Nat Rev Microbiol 2: 861–871.
44. RubensteinR, DengH, RaceRE, JuW, ScaliciCL, et al. (1992) Demonstration of scrapie strain diversity in infected PC12 cells. J Gen Virol 73(Pt 11): 3027–3031.
45. LehmannS (2005) Prion propagation in cell culture. Methods Mol Biol 299: 227–234.
46. ArimaK, NishidaN, SakaguchiS, ShigematsuK, AtarashiR, et al. (2005) Biological and biochemical characteristics of prion strains conserved in persistently infected cell cultures. J Virol 79: 7104–7112.
47. MahalSP, BakerCA, DemczykCA, SmithEW, JuliusC, et al. (2007) Prion strain discrimination in cell culture: the cell panel assay. Proc Natl Acad Sci U S A 104: 20908–20913.
48. HardemanEC, MintyA, Benton-VosmanP, KedesL, BlauHM (1988) In vivo system for characterizing clonal variation and tissue-specific gene regulatory factors based on function. J Cell Biol 106: 1027–1034.
49. JuliusC, HutterG, WagnerU, SeegerH, KanaV, et al. (2008) Transcriptional stability of cultured cells upon prion infection. J Mol Biol 375: 1222–1233.
50. RaceR, ChesebroB (1998) Scrapie infectivity found in resistant species. Nature 392: 770.
51. RubensteinR, ScaliciCL, PapiniMC, CallahanSM, CarpRI (1990) Further characterization of scrapie replication in PC12 cells. J Gen Virol 71(Pt 4): 825–831.
52. MallucciG, DickinsonA, LinehanJ, KlohnPC, BrandnerS, et al. (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302: 871–874.
53. PrusinerSB, ScottM, FosterD, PanKM, GrothD, et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63: 673–686.
54. RaymondGJ, RaymondLD, Meade-WhiteKD, HughsonAG, FavaraC, et al. (2007) Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains. J Virol 81: 4305–4314.
55. KärberG (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 162: 480–483.
56. PrusinerSB, CochranSP, GrothDF, DowneyDE, BowmanKA, et al. (1982) Measurement of the scrapie agent using an incubation time interval assay. Ann Neurol 11: 353–358.
57. FischerM, RulickeT, RaeberA, SailerA, MoserM, et al. (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15: 1255–1264.
58. SandbergMK, Al-DoujailyH, SharpsB, ClarkeAR, CollingeJ (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470: 540–542.
59. KascsakR (2010) Reiterating the epitope specificity of prion-specific mAb 3F4. J Biol Chem 285: le5 author reply le6.
60. ChoiJK, ParkSJ, JunYC, OhJM, JeongBH, et al. (2006) Generation of monoclonal antibody recognized by the GXXXG motif (glycine zipper) of prion protein. Hybridoma (Larchmt) 25: 271–277.
61. FeraudetC, MorelN, SimonS, VollandH, FrobertY, et al. (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280: 11247–11258.
62. MoodyLR, HerbstAJ, YooHS, VanderlooJP, AikenJM (2009) Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone. Prion 3: 99–109.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Baculoviruses: Sophisticated Pathogens of Insects
- Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication
- Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II
- A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency