How Do Viruses Avoid Inhibition by Endogenous Cellular MicroRNAs?
article has not abstract
Vyšlo v časopise:
How Do Viruses Avoid Inhibition by Endogenous Cellular MicroRNAs?. PLoS Pathog 9(11): e32767. doi:10.1371/journal.ppat.1003694
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003694
Souhrn
article has not abstract
Zdroje
1. BartelDP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233.
2. CullenBR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865.
3. LoebGB, KhanAA, CannerD, HiattJB, ShendureJ, et al. (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48: 760–770.
4. AmeresSL, MartinezJ, SchroederR (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130: 101–112.
5. JoplingCL, YiM, LancasterAM, LemonSM, SarnowP (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309: 1577–1581.
6. KwonC, HanZ, OlsonEN, SrivastavaD (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 102: 18986–18991.
7. SkalskyRL, CullenBR (2011) Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS ONE 6: e24248 doi: 10.1371/journal.pone.0024248
8. LandgrafP, RusuM, SheridanR, SewerA, IovinoN, et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401–1414.
9. GrundhoffA, SullivanCS (2011) Virus-encoded microRNAs. Virology 411: 325–343.
10. KincaidRP, BurkeJM, SullivanCS (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci U S A 109: 3077–3082.
11. LinnstaedtSD, GottweinE, SkalskyRL, LuftigMA, CullenBR (2010) Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. J Virol 84: 11670–11678.
12. HoBC, YuSL, ChenJJ, ChangSY, YanBS, et al. (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9: 58–69.
13. LecellierCH, DunoyerP, ArarK, Lehmann-CheJ, EyquemS, et al. (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308: 557–560.
14. ZhengZ, KeX, WangM, HeS, LiQ, et al. (2013) Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 87: 5645–5656.
15. OtsukaM, JingQ, GeorgelP, NewL, ChenJ, et al. (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27: 123–134.
16. ZengY, YiR, CullenBR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100: 9779–9784.
17. YlösmäkiE, HakkarainenT, HemminkiA, VisakorpiT, AndinoR, et al. (2008) Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific MicroRNA. J Virol 82: 11009–11015.
18. KellyEJ, HadacEM, GreinerS, RussellSJ (2008) Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 14: 1278–1283.
19. LangloisRA, AlbrechtRA, KimbleB, SuttonT, ShapiroJS, et al. (2013) MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nat Biotechnol
20. BarnesD, KunitomiM, VignuzziM, SakselaK, AndinoR (2008) Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4: 239–248.
21. BackesS, ShapiroJS, SabinLR, PhamAM, ReyesI, et al. (2012) Degradation of host microRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 12: 200–210.
22. SanghviVR, SteelLF (2011) A re-examination of global suppression of RNA interference by HIV-1. PLoS ONE 6: e17246 doi: 10.1371/journal.pone.0017246
23. DavisM, SaganSM, PezackiJP, EvansDJ, SimmondsP (2008) Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol 82: 11824–11836.
24. WattsJM, DangKK, GorelickRJ, LeonardCW, BessJWJr, et al. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460: 711–716.
25. TanX, LuZJ, GaoG, XuQ, HuL, et al. (2012) Tiling genomes of pathogenic viruses identifies potent antiviral shRNAs and reveals a role for secondary structure in shRNA efficacy. Proc Natl Acad Sci U S A 109: 869–874.
26. HafnerM, LandthalerM, BurgerL, KhorshidM, HausserJ, et al. (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141: 129–141.
27. WhisnantAW, BogerdHP, FloresO, HoP, PowersJG, et al. (2013) In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. mBio 4: e00193.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Baculoviruses: Sophisticated Pathogens of Insects
- Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication
- Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II
- A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency