Global Rescue of Defects in HIV-1 Envelope Glycoprotein Incorporation: Implications for Matrix Structure
The matrix (MA) domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env) glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice.
Vyšlo v časopise:
Global Rescue of Defects in HIV-1 Envelope Glycoprotein Incorporation: Implications for Matrix Structure. PLoS Pathog 9(11): e32767. doi:10.1371/journal.ppat.1003739
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003739
Souhrn
The matrix (MA) domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env) glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice.
Zdroje
1. SundquistWI, KräusslichH-G (2012) HIV-1 Assembly, Budding, and Maturation. Cold Spring Harbor perspectives in medicine 2: a006924 doi:10.1101/cshperspect.a006924
2. OnoA, AblanSD, LockettSJ, NagashimaK, FreedEO (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America 101: 14889–14894.
3. WaheedAA, FreedEO (2010) The role of lipids in retrovirus replication. Viruses 2: 1146–1180 doi:10.3390/v2051146
4. TangC, LoeligerE, LuncsfordP, KindeI, BeckettD, et al. (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proceedings of the National Academy of Sciences of the United States of America 101: 517–522 doi:10.1073/pnas.0305665101
5. SaadJS, MillerJ, TaiJ, KimA, GhanamRH, et al. (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proceedings of the National Academy of Sciences of the United States of America 103: 11364–11369 doi:10.1073/pnas.0602818103
6. CheckleyMA, LuttgeBG, FreedEO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. Journal of molecular biology 410: 582–608 doi:10.1016/j.jmb.2011.04.042
7. JohnsonMC (2011) Mechanisms for Env glycoprotein acquisition by retroviruses. AIDS research and human retroviruses 27: 239–247 doi:10.1089/AID.2010.0350
8. PostlerTS, DesrosiersRC (2012) The Tale of the Long Tail: the Cytoplasmic Domain of HIV-1 gp41. Journal of virology doi:10.1128/JVI.02053-12
9. MurakamiT, FreedEO (2000) The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proceedings of the National Academy of Sciences of the United States of America 97: 343–348.
10. MurakamiT, FreedEO (2000) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. Journal of virology 74: 3548–3554.
11. QiM, WilliamsJA, ChuH, ChenX, WangJ-J, et al. (2013) Rab11-FIP1C and Rab14 Direct Plasma Membrane Sorting and Particle Incorporation of the HIV-1 Envelope Glycoprotein Complex. PLoS Pathogens 9: e1003278 doi:10.1371/journal.ppat.1003278
12. PostlerTS, DesrosiersRC (2012) The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-κB activation through TGF-β-activated kinase 1. Cell host & microbe 11: 181–193 doi:10.1016/j.chom.2011.12.005
13. FreedEO, MartinMA (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. Journal of virology 69: 1984–1989.
14. FreedEO, MartinMA (1996) Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. Journal of virology 70: 341–351.
15. BrandanoL, StevensonM (2011) A Highly Conserved Residue in the C-Terminal Helix of HIV-1 Matrix is Required for Envelope Incorporation into Virus Particles. Journal of virology doi:10.1128/JVI.06047-11
16. MammanoF, KondoE, SodroskiJ, BukovskyA, GöttlingerHG (1995) Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. Journal of virology 69: 3824–3830.
17. GöttlingerHG, SodroskiJG, HaseltineWA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America 86: 5781–5785.
18. BryantM, RatnerL (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proceedings of the National Academy of Sciences of the United States of America 87: 523–527.
19. FreedEO, OrensteinJM, Buckler-WhiteAJ, MartinMA (1994) Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. Journal of virology 68: 5311–5320.
20. OnoA, HuangM, FreedEO (1997) Characterization of human immunodeficiency virus type 1 matrix revertants: effects on virus assembly, Gag processing, and Env incorporation into virions. Journal of virology 71: 4409–4418.
21. OnoA, FreedEO (1999) Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. Journal of virology 73: 4136–4144.
22. SaadJS, LoeligerE, LuncsfordP, LirianoM, TaiJ, et al. (2007) Point mutations in the HIV-1 matrix protein turn off the myristyl switch. Journal of molecular biology 366: 574–585 doi:10.1016/j.jmb.2006.11.068
23. OnoA, FreedEO (2004) Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. Journal of virology 78: 1552–1563.
24. ChukkapalliV, OnoA (2011) Molecular determinants that regulate plasma membrane association of HIV-1 Gag. Journal of molecular biology 410: 512–524 doi:10.1016/j.jmb.2011.04.015
25. ReilH, BukovskyAA, GelderblomHR, GöttlingerHG (1998) Efficient HIV-1 replication can occur in the absence of the viral matrix protein. The EMBO journal 17: 2699–2708 doi:10.1093/emboj/17.9.2699
26. KiernanRE, OnoA, EnglundG, FreedEO (1998) Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle. Journal of virology 72: 4116–4126.
27. KiernanRE, OnoA, FreedEO (1999) Reversion of a human immunodeficiency virus type 1 matrix mutation affecting Gag membrane binding, endogenous reverse transcriptase activity, and virus infectivity. Journal of virology 73: 4728–4737.
28. SteckbeckJD, SunC, SturgeonTJ, MontelaroRC (2010) Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes. PloS one 5: e15261 doi:10.1371/journal.pone.0015261
29. SteckbeckJD, SunC, SturgeonTJ, MontelaroRC (2013) Detailed topology mapping reveals substantial exposure of the “cytoplasmic” C-terminal tail (CTT) sequences in HIV-1 Env proteins at the cell surface. PloS one 8: e65220 doi:10.1371/journal.pone.0065220
30. PostlerTS, Martinez-NavioJM, YusteE, DesrosiersRC (2012) Evidence Against Extracellular Exposure of a Highly Immunogenic Region in the C-Terminal Domain of the SIVmac gp41 Transmembrane Protein. Journal of virology 86: 1145–1157 doi:10.1128/JVI.06463-11
31. SteckbeckJD, KuhlmannA-S, MontelaroRC (2013) C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic. The Journal of general virology 94: 1–19 doi:10.1099/vir.0.046508-0
32. HillCP, WorthylakeD, BancroftDP, ChristensenAM, SundquistWI (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proceedings of the National Academy of Sciences of the United States of America 93: 3099–3104.
33. MassiahMA, StarichMR, PaschallC, Summers, ChristensenMichael F, AllysonM, SundquistWI (1994) Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. Journal of molecular biology 244: 198–223.
34. RaoZ, BelyaevAS, FryE, RoyP, JonesIM, et al. (1995) Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 378: 743–747 doi:10.1038/378743a0
35. AlfadhliA, BarklisRL, BarklisE (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387: 466–472 doi:10.1016/j.virol.2009.02.048
36. MassiahMA, WorthylakeD, ChristensenAM, SundquistWI, HillCP, et al. (1996) Comparison of the NMR and X-ray structures of the HIV-1 matrix protein: evidence for conformational changes during viral assembly. Protein science: a publication of the Protein Society 5: 2391–2398 doi:10.1002/pro.5560051202
37. CossonP (1996) Direct interaction between the envelope and matrix proteins of HIV-1. The EMBO journal 15: 5783–5788.
38. VincentMJ, MelsenLR, MartinAS, CompansRW (1999) Intracellular Interaction of Simian Immunodeficiency Virus Gag and Env Proteins. Journal of virology 73: 8138–8144.
39. ManriqueJM, AffranchinoJL, GonzálezSA (2008) In vitro binding of simian immunodeficiency virus matrix protein to the cytoplasmic domain of the envelope glycoprotein. Virology 374: 273–279 doi:10.1016/j.virol.2008.01.015
40. JoshiA, AblanSD, SoheilianF, NagashimaK, FreedEO (2009) Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. Journal of virology 83: 5375–5387 doi:10.1128/JVI.00109-09
41. WeiX, DeckerJM, LiuH, ZhangZ, AraniRB, et al. (2002) Emergence of Resistant Human Immunodeficiency Virus Type 1 in Patients Receiving Fusion Inhibitor (T-20) Monotherapy. Antimicrobial Agents and Chemotherapy 46: 1896–1905 doi:10.1128/AAC.46.6.1896-1905.2002
42. VinogradovSN (1979) Hydrogen bonds in crystal structures of amino acids, peptides and related molecules. International Journal of Peptide and Protein Research 14: 281–289 doi:10.1111/j.1399-3011.1979.tb01934.x
43. WymaDJ, KotovA, AikenC (2000) Evidence for a stable interaction of gp41 with Pr55(Gag) in immature human immunodeficiency virus type 1 particles. Journal of virology 74: 9381–9387.
44. DeschambeaultJ, LalondeJP, Cervantes-AcostaG, LodgeR, CohenEA, et al. (1999) Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. Journal of virology 73: 5010–5017.
45. LodgeR, GöttlingerH, GabuzdaD, CohenEA, LemayG (1994) The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. Journal of virology 68: 4857–4861.
46. ChojnackiJ, StaudtT, GlassB, BingenP, EngelhardtJ, et al. (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science (New York, NY) 338: 524–528 doi:10.1126/science.1226359
47. WymaDJ, JiangJ, ShiJ, ZhouJ, LinebergerJE, et al. (2004) Coupling of Human Immunodeficiency Virus Type 1 Fusion to Virion Maturation: a Novel Role of the gp41 Cytoplasmic Tail. Journal of Virology 78: 3429–3435 doi:10.1128/JVI.78.7.3429-3435.2004
48. MurakamiT, AblanS, FreedE, TanakaY (2004) Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. Journal of virology 78: 1026–1031 doi:10.1128/JVI.78.2.1026
49. WrightER, SchoolerJB, DingHJ, KiefferC, FillmoreC, et al. (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. The EMBO journal 26: 2218–2226 doi:10.1038/sj.emboj.7601664
50. MorikawaY, ZhangWH, HockleyDJ, NermutMV, JonesIM (1998) Detection of a trimeric human immunodeficiency virus type 1 Gag intermediate is dependent on sequences in the matrix protein, p17. Journal of virology 72: 7659–7663.
51. AlfadhliA, HusebyD, KapitE, ColmanD, BarklisE (2007) Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer. Journal of virology 81: 1472–1478 doi:10.1128/JVI.02122-06
52. YangP, AiL-S, HuangS-C, LiH-F, ChanW-E, et al. (2010) The cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 harbors lipid raft association determinants. Journal of virology 84: 59–75 doi:10.1128/JVI.00899-09
53. LindwasserOW, ReshMD (2001) Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. Journal of virology 75: 7913–7924.
54. NguyenDH, HildrethJE (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. Journal of virology 74: 3264–3272.
55. OnoA, FreedEO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proceedings of the National Academy of Sciences of the United States of America 98: 13925–13930 doi:10.1073/pnas.241320298
56. HogueIB, GroverJR, SoheilianF, NagashimaK, OnoA (2011) Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. Journal of virology 85: 9749–9766 doi:10.1128/JVI.00743-11
57. KrementsovDN, RassamP, MargeatE, RoyNH, Schneider-SchauliesJ, et al. (2010) HIV-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components. Traffic (Copenhagen, Denmark) 11: 1401–1414.
58. DickRA, GohSL, FeigensonGW, VogtVM (2012) HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proceedings of the National Academy of Sciences of the United States of America 109: 18761–18766 doi:10.1073/pnas.1209408109
59. BrüggerB, GlassB, HaberkantP, LeibrechtI, WielandFT, et al. (2006) The HIV lipidome: a raft with an unusual composition. Proceedings of the National Academy of Sciences of the United States of America 103: 2641–2646 doi:10.1073/pnas.0511136103
60. ChanR, UchilPD, JinJ, ShuiG, OttDE, et al. (2008) Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. Journal of virology 82: 11228–11238 doi:10.1128/JVI.00981-08
61. JorgensonRL, VogtVM, JohnsonMC (2009) Foreign glycoproteins can be actively recruited to virus assembly sites during pseudotyping. Journal of virology 83: 4060–4067 doi:10.1128/JVI.02425-08
62. MuranyiW, MalkuschS, MüllerB, HeilemannM, KräusslichH-G (2013) Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail. PLoS Pathogens 9: e1003198 doi:10.1371/journal.ppat.1003198
63. RoyNH, ChanJ, LambeleM, ThaliM (2013) Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict its Propensity to Induce Cell-Cell Fusion. Journal of Virology 87: 7516–7525 doi:10.1128/JVI.00790-13
64. CannonPM, MatthewsS, ClarkN, BylesED, IourinO, et al. (1997) Structure-function studies of the human immunodeficiency virus type 1 matrix protein, p17. Journal of virology 71: 3474–3483.
65. PlattEJ, WehrlyK, KuhmannSE, ChesebroB, KabatD (1998) Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. Journal of virology 72: 2855–2864.
66. PurtscherM, TrkolaA, GruberG, BuchacherA, PredlR, et al. (1994) A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS research and human retroviruses 10: 1651–1658.
67. AdachiA, GendelmanHE, KoenigS, FolksT, WilleyR, et al. (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of virology 59: 284–291.
68. WilleyRL, SmithDH, LaskyLA, TheodoreTS, EarlPL, et al. (1988) In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. Journal of virology 62: 139–147.
69. Waheed AA, Ono A, Freed EO (2009) Methods for the study of HIV-1 assembly. In: Prasad VR, Kalpana G V., editors. HIV Protocols. Totowa, NJ: Humana Press, Vol. 485. pp.163–184. doi:10.1007/978-1-59745-170-3.
70. Pymol (2006). Available: http://www.pymol.org/.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 11
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Baculoviruses: Sophisticated Pathogens of Insects
- Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication
- Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II
- A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency