Developing Models of Disease Transmission: Insights from Ecological Studies of Insects and Their Baculoviruses
article has not abstract
Vyšlo v časopise:
Developing Models of Disease Transmission: Insights from Ecological Studies of Insects and Their Baculoviruses. PLoS Pathog 9(6): e32767. doi:10.1371/journal.ppat.1003372
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003372
Souhrn
article has not abstract
Zdroje
1. KeelingMJ, WoolhouseMEJ, MayRM, DaviesG, GrenfellBT (2003) Modelling vaccination strategies against foot-and-mouth disease. Nature 421: 136–142.
2. KermackW, McKendrickA (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond A Math Phys Sci 115: 700–721.
3. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press.
4. AndersonRM, MayRM (1980) Infectious diseases and population cycles of forest insects. Science 210: 658–661.
5. ElderdBD, DushoffJ, DwyerG (2008) Does natural selection on disease susceptibility play a role in insect outbreaks? Am Nat 172: 829–842.
6. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton: Princeton University Press.
7. DwyerG, DushoffJ, YeeSH (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430: 341–345.
8. Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega F, Kaya H, editors. Insect pathology. London: Academic Press.
9. van OersMM (2011) Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 107: S3–S15.
10. DeverTE, SripriyaR, McLachlinJR, LuJF, FabianJR, et al. (1998) Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2 alpha kinase homolog. Proc Natl Acad Sci U S A 95: 4164–4169.
11. MetzSW, PijlmanGP (2011) Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. J Invertebr Pathol 107: S16–S30.
12. CoryJ, MyersJ (2003) The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34: 239–272.
13. Miller LK, editor(1997) The baculoviruses. New York: Plenum Press.
14. SchultzJ, BaldwinIT (1982) Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217: 149–150.
15. FosterMA, SchultzJC, HunterMD (1992) Modelling gypsy moth-virus-leaf chemistry interactions: implications of plant quality for pest and pathogen dynamics. J Anim Ecol 61: 509–520.
16. BjørnstadON, RobinetC, LiebholdAM (2010) Geographic variation in North American gypsy moth cycles: subharmonics, generalist predators, and spatial coupling. Ecology 91: 106–118.
17. JonesC, OstfeldR, RichardM, SchauberE, WolffJ (1998) Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279: 1023–1026.
18. HooverK, GroveM, GardnerM, HughesDP, McNeilJ, et al. (2011) A gene for an extended phenotype. Science 333: 1401.
19. FuxaJR (1987) Spodoptera frugiperda susceptibility to nuclear polyhedrosis virus isolates with reference to insect migration. Environ Entomol 16: 218–223.
20. BootsM, MealorM (2007) Local interactions select for lower pathogen infectivity. Science 315: 1284–1286.
21. FullerE, ElderdBD, DwyerG (2012) Pathogen persistence in the environment and insect-baculovirus interactions: disease-density thresholds, epidemic burnout, and insect outbreaks. Am Nat 179: E70–E96.
22. PascualM, BoumaMJ, DobsonAP (2002) Cholera and climate: revisiting the quantitative evidence. Microbes Infect 4: 237–245.
23. BrebanR, DrakeJM, StallknechtDE, RohaniP (2009) The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput Biol 5: e1000346 doi:10.1371/journal.pcbi.1000346
24. LaffertyKD (2009) The ecology of climate change and infectious diseases. Ecology 90: 888–900.
25. DobsonA (2009) Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 90: 920–927.
26. PascualM, BoumaMJ (2009) Do rising temperatures matter? Ecology 90: 906–912.
27. PimentelD, MclaughlinL, ZeppA, LakitanB, KrausT, et al. (1991) Environmental and economic effects of reducing pesticide use - a substantial reduction in pesticides might increase food costs only slightly. Bioscience 41: 402–409.
28. PimentelD, HepperlyP, HansonJ, DoudsD, SeidelR (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55: 573–582.
29. van FrankenhuyzenK (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101: 1–16.
30. KerrPJ, GhedinE, DePasseJV, FitchA, CattadoriIM, et al. (2012) Evolutionary history and attenuation of myxoma virus on two continents. PLoS Pathog 8: e1002950 doi:10.1371/journal.ppat.1002950
31. WhittleA, LenhartS, WhiteKAJ (2008) Optimal control of gypsy moth populations. Bull Math Biol 70: 398–411.
32. MacIauchlanL, HallP, OtvosI, BrooksJ (2009) An integrated management system for the Douglas-fir tussock moth in southern British Columbia. BC Journal of Ecosystems and Management 10: 22–36.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 6
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Asthma and the Diversity of Fungal Spores in Air
- Streptolysin O and its Co-Toxin NAD-glycohydrolase Protect Group A from Xenophagic Killing
- A Type IV Pilus Mediates DNA Binding during Natural Transformation in
- Cryotomography of Budding Influenza A Virus Reveals Filaments with Diverse Morphologies that Mostly Do Not Bear a Genome at Their Distal End