#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Introducing the Outbreak Threshold in Epidemiology


When a pathogen is rare in a host population, there is a chance that it will die out because of stochastic effects instead of causing a major epidemic. Yet no criteria exist to determine when the pathogen increases to a risky level, from which it has a large chance of dying out, to when a major outbreak is almost certain. We introduce such an outbreak threshold (T0), and find that for large and homogeneous host populations, in which the pathogen has a reproductive ratio R0, on the order of 1/Log(R0) infected individuals are needed to prevent stochastic fade-out during the early stages of an epidemic. We also show how this threshold scales with higher heterogeneity and R0 in the host population. These results have implications for controlling emerging and re-emerging pathogens.


Vyšlo v časopise: Introducing the Outbreak Threshold in Epidemiology. PLoS Pathog 9(6): e32767. doi:10.1371/journal.ppat.1003277
Kategorie: Opinion
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003277

Souhrn

When a pathogen is rare in a host population, there is a chance that it will die out because of stochastic effects instead of causing a major epidemic. Yet no criteria exist to determine when the pathogen increases to a risky level, from which it has a large chance of dying out, to when a major outbreak is almost certain. We introduce such an outbreak threshold (T0), and find that for large and homogeneous host populations, in which the pathogen has a reproductive ratio R0, on the order of 1/Log(R0) infected individuals are needed to prevent stochastic fade-out during the early stages of an epidemic. We also show how this threshold scales with higher heterogeneity and R0 in the host population. These results have implications for controlling emerging and re-emerging pathogens.


Zdroje

1. MorensDM, FolkersGK, FauciAS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430: 242–249.

2. WoolhouseM, ScottF, HudsonZ, HoweyR, Chase-ToppingM (2012) Human viruses: discovery and emergence. Philos Trans R Soc Lond B Biol Sci 367: 2864–2871.

3. FargetteD, KonateG, FauquetC, MullerE, PeterschmittM, et al. (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44: 235–260.

4. Anderson RM, May RM (1991) Infectious diseases of humans. Dynamics and control. Oxford: Oxford University Press. 757 p.

5. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Chichester: John Wiley. 303 p.

6. Allen L (2008) An introduction to stochastic epidemic models. In: Brauer F, van den Driessche P, Wu J, editors. Mathematical epidemiology. Berlin/Heidelberg: Springer. pp. 81–130.

7. BartlettMS (1960) The critical community size for measles in the United States. J R Stat Soc Ser A Stat Soc 123: 37–44.

8. Keeling MJ, Rohani P (2007) Modelling infectious diseases in humans and animals. Princeton: Princeton University Press. 408 p.

9. AntiaR, RegoesRR, KoellaJC, BergstromCT (2003) The role of evolution in the emergence of infectious diseases. Nature 426: 658–661.

10. YatesA, AntiaR, RegoesRR (2006) How do pathogen evolution and host heterogeneity interact in disease emergence? Proc Biol Sci 273: 3075–3083.

11. Lloyd-SmithJO, SchreiberSJ, KoppPE, GetzWM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438: 355–359.

12. KubiakRJ, ArinaminpathyN, McLeanAR (2010) Insights into the evolution and emergence of a novel infectious disease. PLoS Comput Biol 6: e1000947 doi:10.1371/journal.pcbi.1000947

13. FergusonNM, FraserC, DonnellyCA, GhaniAC, AndersonRM (2004) Public health risk from the avian H5N1 influenza epidemic. Science 304: 968–969.

14. KaplanNL, HudsonRR, LangleyCH (1989) The “hitchhiking effect” revisited. Genetics 123: 887–889.

15. BartonNH (2000) Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci 355: 1553–1562.

16. DesaiMM, FisherDS (2007) Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics 176: 1759–1798.

17. GalvaniAP, MayRM (2005) Epidemiology: dimensions of superspreading. Nature 438: 293–295.

18. AlexanderHK, DayT (2010) Risk factors for the evolutionary emergence of pathogens. J R Soc Interface 7: 1455–1474.

19. Wolfram Research, Inc. (2010) Mathematica Edition: Version 8.0. Champaign, Illinois: Wolfram Research, Inc.

20. Shooter RA (1980) Report of the investigation into the cause of the 1978 Birmingham smallpox occurrence. London: HM Stationery Office. 231 p.

21. LeoYS, ChenM, HengBH, LeeCC, PatonN, et al. (2003) Severe acute respiratory syndrome — Singapore, 2003. MMWR Morb Mortal Wkly Rep 52: 405–411.

22. GillespieDT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#