Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses
Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission.
Vyšlo v časopise:
Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses. PLoS Pathog 9(6): e32767. doi:10.1371/journal.ppat.1003450
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003450
Souhrn
Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission.
Zdroje
1. KaufmanWR (2007) Gluttony and sex in female ixodid ticks: how do they compare to other blood-sucking arthropods? Journal of insect physiology 53: 264–273 doi:10.1016/j.jinsphys.2006.10.004
2. Marquardt WH, editor (2004) Biology of Disease Vectors. 2nd ed. Burlington: Academic Press. 786 p.
3. BianchiME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of leukocyte biology 81: 1–5 doi:10.1189/jlb.0306164
4. PaesenGC, AdamsPL, HarlosK, NuttallPA, StuartDI (1999) Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Molecular cell 3: 661–671.
5. ValenzuelaJG, CharlabR, MatherTN, RibeiroJM (2000) Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. The Journal of biological chemistry 275: 18717–18723 doi:10.1074/jbc.M001486200
6. TysonK, ElkinsC, PattersonH, FikrigE, de SilvaA (2007) Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect molecular biology 16: 469–479.
7. PaesenGC, SieboldC, HarlosK, PeaceyMF, NuttallPA, et al. (2007) A tick protein with a modified Kunitz fold inhibits human tryptase. Journal of molecular biology 368: 1172–1186 doi:10.1016/j.jmb.2007.03.011
8. DéruazM, FrauenschuhA, AlessandriAL, DiasJM, CoelhoFM, et al. (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. The Journal of experimental medicine 205: 2019–2031 doi:10.1084/jem.20072689
9. GuoX, BoothCJ, PaleyMA, WangX, DePonteK, et al. (2009) Inhibition of neutrophil function by two tick salivary proteins. Infection and immunity 77: 2320–2329 doi:10.1128/IAI.01507-08
10. HannierS, LiversidgeJ, SternbergJM, BowmanAS (2004) Characterization of the B-cell inhibitory protein factor in Ixodes ricinus tick saliva: a potential role in enhanced Borrelia burgdoferi transmission. Immunology 113: 401–408.
11. YuD, LiangJ, YuH, WuH, XuC, et al. (2006) A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum. Biochemical and biophysical research communications 343: 585–590 doi:10.1016/j.bbrc.2006.02.188
12. MejriN, RuttiB, BrossardM (2002) Immunosuppressive effects of ixodes ricinus tick saliva or salivary gland extracts on innate and acquired immune response of BALB/c mice. Parasitology research 88: 192–197.
13. WangH, NuttallPA (1995) Immunoglobulin-G binding proteins in the ixodid ticks, Rhipicephalus appendiculatus, Amblyomma variegatum and Ixodes hexagonus. Parasitology 111(2): 161–165.
14. HarmanAN, ByeCR, NasrN, SandgrenKJ, KimM, et al. (2012) Identification of Lineage Relationships and Novel Markers of Blood and Skin Human Dendritic Cells. Journal of immunology 190: 66–79 doi:10.4049/jimmunol.1200779
15. Reis e SousaC (2006) Dendritic cells in a mature age. Nature reviews Immunology 6: 476–483 doi:10.1038/nri1845
16. HelftJ, GinhouxF, BogunovicM, MeradM (2010) Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunological reviews 234: 55–75.
17. OdobasicD, LeechMT, XueJR, HoldsworthSR (2008) Distinct in vivo roles of CD80 and CD86 in the effector T-cell responses inducing antigen-induced arthritis. Immunology 124: 503–513.
18. ShanM, KlassePJ, BanerjeeK, DeyAK, IyerSPN, et al. (2007) HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathogens 3: e169 doi:10.1371/journal.ppat.0030169
19. AgrawalA, LingappaJ, LepplaSH, AgrawalS, JabbarA, et al. (2003) Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424: 329–334 doi:10.1038/nature01794
20. GeijtenbeekTBH, Van VlietSJ, KoppelEA, Sanchez-HernandezM, Vandenbroucke-GraulsCMJE, et al. (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. The Journal of experimental medicine 197: 7–17.
21. FigueiredoAB, SerafimTD, Marques-da-SilvaEA, Meyer-FernandesJR, AfonsoLCC (2012) Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation. European journal of immunology 42: 1203–1215 doi:10.1002/eji.201141926
22. WhelanM, HarnettMM, HoustonKM, PatelV, HarnettW, et al. (2000) A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. Journal of immunology 164: 6453–6460.
23. BarkerSC, MurrellA (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129(Suppl): S15–36.
24. Sá-NunesA, BaficaA, AntonelliLR, ChoiEY, FrancischettiIMB, et al. (2009) The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. Journal of immunology 182: 7422–7429 doi:10.4049/jimmunol.0900075
25. Sá-NunesA, BaficaA, LucasDA, ConradsTP, VeenstraTD, et al. (2007) Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. Journal of immunology 179: 1497–1505.
26. OliveiraCJF, Sá-NunesA, FrancischettiIMB, CarregaroV, AnatrielloE, et al. (2011) Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. The Journal of biological chemistry 286: 10960–10969 doi:10.1074/jbc.M110.205047
27. HoviusJWR, de JongMAWP, den DunnenJ, LitjensM, FikrigE, et al. (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathogens 4: e31 doi:10.1371/journal.ppat.0040031
28. GargR, JuncadellaIJ, RamamoorthiN, Ashish, AnanthanarayananSK, et al. (2006) Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. Journal of immunology 177: 6579–6583.
29. Walker JB, Keirans JE, Horak IG (2000) The Genus Rhipicephalus (Acari, Ixodidae): a guide to the brown ticks of the world. Cambridge: Cambridge University Press.
30. StehleRG (1982) Physical Chemistry, Stability, and Handling of Prostaglandins E2, F2a, D2, and I2: A Critical Summary. Methods in Enzymology 86: 436–458.
31. PetersenTN, BrunakS, von HeijneG, NielsenH (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods 8: 785–786 doi:10.1038/nmeth.1701
32. KozakM (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Journal of molecular biology 196: 947–950.
33. AljamaliMN, RamakrishnanVG, WengH, TuckerJS, SauerJR, et al. (2009) Microarray analysis of gene expression changes in feeding female and male lone star ticks, Amblyomma americanum (L). Archives of insect biochemistry and physiology 71: 236–253 doi:10.1002/arch.20318
34. Kemp DH, Stone BF, Binnington KC (1982) In:Obenchain FD and Galun R, editors. Physiology of Ticks. Oxford: Pergamon Press. pp119–168.
35. KaufmanWR (1989) Tick-host interaction: a synthesis of current concepts. Parasitology today 5: 47–56.
36. WangH, PaesenGC, NuttallPA, BarbourAG (1998) Male ticks help their mates to feed. Nature 391: 753–754.
37. VancovaI, HajnickaV, SlovakM, NuttallPA (2009) Anti-Chemokine Activities Of Ixodid Ticks Depend On Tick Species, Developmental Stage, And Duration Of Feeding. Veterinary Parasitology 167: 274–278.
38. NunnMA, SharmaA, PaesenGC, AdamsonS, LissinaO, et al. (2005) Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. Journal of immunology 174: 2084–2091.
39. AkiraS, UematsuS, TakeuchiO (2006) Pathogen Recognition and Innate Immunity. Cell 124: 783–801.
40. RoakeJA, RaoAS, MorrisPJ, LarsenCP, HankinsDF, et al. (1995) Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. The Journal of experimental medicine 181: 2237–2247.
41. LarsenCP, SteinmanRM, Witmer-PackM, HankinsDF, MorrisPJ, et al. (1990) Migration and maturation of Langerhans cells in skin transplants and explants. The Journal of experimental medicine 172: 1483–1493.
42. CheongC, MatosI, ChoiJH, DandamudiDB, ShresthaE, et al. (2010) Microbial Stimulation Fully Differentiates Monocytes to DC-SIGN/CD209+ Dendritic Cells for Immune T Cell Areas. Cell 143: 416–429.
43. RandolphGJ, BeaulieuS, LebecqueS, SteinmanRM, MullerWA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282: 480–483.
44. CastelliE, CaputoV, MorelloV, TomasinoRM (2008) Local reactions to tick bites. The American Journal of dermatopathology 30: 241–248 doi:10.1097/DAD.0b013e3181676b60
45. FlowerDR (1996) The lipocalin protein family: structure and function. The Biochemical journal 318(Pt 1): 1–14.
46. PaesenGC, AdamsPL, NuttallPA, StuartDL (2000) Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochimica et biophysica acta 1482: 92–101.
47. AdamB, CharloteauxB, BeaufaysJ, VanhammeL, GodfroidE, et al. (2008) Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling. BMC structural biology 8: 1 doi:10.1186/1472-6807-8-1
48. MansBJ, NeitzAWH (2004) Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect biochemistry and molecular biology 34: 1–17.
49. MansBJ, NeitzAWH (2004) Exon-intron structure of outlier tick lipocalins indicate a monophyletic origin within the larger lipocalin family. Insect biochemistry and molecular biology 34: 585–594 doi:10.1016/j.ibmb.2004.03.006
50. SharpPA, BurgeCB (1997) Classification of introns: U2-type or U12-type. Cell 91: 875–879.
51. IrimiaM, PennyD, RoySW (2007) Coevolution of genomic intron number and splice sites. Trends in Genetics 23: 321–325.
52. CarmelI, TalS, VigI, AstG (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. Rna 10: 828–840.
53. Pagel Van ZeeJ, GeraciNS, GuerreroFD, WikelSK, StuartJJ, et al. (2007) Tick genomics: the Ixodes genome project and beyond. International journal for parasitology 37: 1297–1305 doi:10.1016/j.ijpara.2007.05.011
54. RescignoM, BorrowP (2001) The host-pathogen interaction: new themes from dendritic cell biology. Cell 106: 267–270.
55. WheatWH, PaukenKE, MorrisRV, TitusRG (2008) Lutzomyia longipalpis salivary peptide maxadilan alters murine dendritic cell expression of CD80/86, CCR7, and cytokine secretion and reprograms dendritic cell-mediated cytokine release from cultures containing allogeneic T cells. Journal of immunology 180: 8286–8298.
56. LernerEA, RibeiroJM, NelsonRJ, LernerMR (1991) Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. The Journal of biological chemistry 266: 11234–11236.
57. VaudryD, Falluel-MorelA, BourgaultS, BasilleM, BurelD, et al. (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacological reviews 61: 283–357 doi:10.1124/pr.109.001370
58. GrespanR, LemosHP, CarregaroV, VerriWA, SoutoFO, et al. (2012) The protein LJM 111 from Lutzomyia longipalpis salivary gland extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model. International immunopharmacology 12: 603–610 doi:10.1016/j.intimp.2012.02.004
59. XuX, OliveiraF, ChangBW, CollinN, GomesR, et al. (2011) Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. The Journal of biological chemistry 286: 32383–32393 doi:10.1074/jbc.M111.268904
60. KotsyfakisM, Sá-NunesA, FrancischettiIMB, MatherTN, AndersenJF, et al. (2006) Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. The Journal of biological chemistry 281: 26298–26307 doi:10.1074/jbc.M513010200
61. HsingLC, RudenskyAY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunological reviews 207: 229–241.
62. OhashiK, NarutoM, NakakiT, SanoE (2003) Identification of interleukin-8 converting enzyme as cathepsin L. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 1649: 30–39.
63. LecailleF, KaletaJ, BrömmeD (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chemical reviews 102: 4459.
64. ButteMJ, KeirME, PhamduyTB, SharpeAH, FreemanGJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27: 111–122 doi:10.1016/j.immuni.2007.05.016
65. FranciscoLM, SalinasVH, BrownKE, VanguriVK, FreemanGJ, et al. (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of experimental medicine 206: 3015–3029 doi:10.1084/jem.20090847
66. LevingsMK, GregoriS, TresoldiE, CazzanigaS, BoniniC, et al. (2005) Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+ CD4+ Tr cells. Blood 105: 1162–1169.
67. BrakeDK, WikelSK, TidwellJP, Pérez de LeónAA (2010) Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages. Parasites & vectors 3: 103 doi:10.1186/1756-3305-3-103
68. FrancischettiIMB, MansBJ, MengZ, GudderraN, VeenstraTD, et al. (2008) An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect biochemistry and molecular biology 38: 1–21 doi:10.1016/j.ibmb.2007.09.009
69. RibeiroJMC, AssumpçãoTCF, PhamVM, FrancischettiIMB, ReisenmanCE (2012) An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). Journal of medical entomology 49: 563–572.
70. LögdbergL, WesterL (2000) Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. Biochimica et biophysica acta 1482: 284–297.
71. AderDB, CelluzziC, BisbingJ, GilmoreL, GuntherV, et al. (2004) Modulation of dengue virus infection of dendritic cells by Aedes aegypti saliva. Viral immunology 17: 252–265 doi:10.1089/0882824041310496
72. Nuttall PA, Labuda M (2008) Saliva-assisted transmission of tick-borne pathogens. In: Bowman AS, Nuttall PA, editors. Ticks: Biology, Disease and Control. Cambridge: Cambridge University Press. pp205–219.
73. da SilvaHB, CaetanoSS, MonteiroI, Gómez-CondeI, HansonK, et al. (n.d.) Early skin immunological disturbance after Plasmodium-infected mosquito bites. Cellular immunology 277: 22–32 doi:10.1016/j.cellimm.2012.06.003
74. RamamoorthiN, NarasimhanS, PalU, BaoF, YangXF, et al. (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436: 573–577 doi:10.1038/nature03812
75. AnguitaJ, RamamoorthiN, HoviusJWR, DasS, ThomasV, et al. (2002) Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16: 849–859.
76. JuncadellaIJ, GargR, BatesTC, OliveraER, AnguitaJ (2008) The Ixodes scapularis salivary protein, salp15, prevents the association of HIV-1 gp120 and CD4. Biochemical and biophysical research communications 367: 41–46 doi:10.1016/j.bbrc.2007.12.104
77. SchuijtTJ, HoviusJWR, van BurgelND, RamamoorthiN, FikrigE, et al. (2008) The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infection and immunity 76: 2888–2894 doi:10.1128/IAI.00232-08
78. MorrisRV, ShoemakerCB, DavidJR, LanzaroGC, TitusRG (2001) Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. Journal of immunology 167: 5226–5230.
79. LabudaM, AustynJM, ZuffovaE, KozuchO, FuchsbergerN, et al. (1996) Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219: 357–366 doi:10.1006/viro.1996.0261
80. KonnaiS, YamadaS, ImamuraS, SimuunzaM, ChembensofM, et al. (2007) Attachment duration required for Rhipicephalus appendiculatus to transmit Theileria parva to the host. Vector borne and zoonotic diseases (Larchmont, NY) 7: 241–248 doi:10.1089/vbz.2006.0616
81. de la FuenteJ, KocanKM, AlmazánC, BlouinEF (2007) RNA interference for the study and genetic manipulation of ticks. Trends in parasitology 23: 427–433.
82. SallustoF, LanzavecchiaA (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. The Journal of experimental medicine 179: 1109–1118.
83. JonesLDDC, SteeleG, NuttallP (1988) The rearing and maintenance of ixodid and argasid ticks in the laboratory. Anim Technol 39: 99–106.
84. PosseeRD, HitchmanRB, RichardsKS, MannSG, SiaterliE, et al. (2008) Generation of baculovirus vectors for the high-throughput production of proteins in insect cells. Biotechnology and bioengineering 101: 1115–1122 doi:10.1002/bit.22002
85. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ, et al. (1990) Basic local alignment search tool. Journal of molecular biology 215: 403–410.
86. MansBJ, RibeiroJMC, AndersenJF (2008) Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. The Journal of biological chemistry 283: 18721–18733 doi:10.1074/jbc.M800188200
87. RoversiP, LissinaO, JohnsonS, AhmatN, PaesenGC, et al. (2007) The structure of OMCI, a novel lipocalin inhibitor of the complement system. Journal of molecular biology 369: 784–793 doi:10.1016/j.jmb.2007.03.064
88. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23: 2947–2948 doi:10.1093/bioinformatics/btm404
89. FrancischettiIMB, Sa-NunesA, MansBJ, SantosIM, RibeiroJMC (2009) The role of saliva in tick feeding. Frontiers in Bioscience 14: 2051–2088.
90. BeaufaysJ, AdamB, DecremY, PrévôtP-P, SantiniS, et al. (2008) Ixodes ricinus tick lipocalins: identification, cloning, phylogenetic analysis and biochemical characterization. PLoS One 3: e3941 doi:10.1371/journal.pone.0003941
91. BeaufaysJ, AdamB, Menten-DedoyartC, FievezL, GrosjeanA, et al. (2008) Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function. PLoS One 3: e3987 doi:10.1371/journal.pone.0003987
92. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797 Available:http://nar.oxfordjournals.org/content/32/5/1792.abstract.
93. WhelanS, GoldmanN (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular biology and evolution 18: 691–699.
94. Team RC (2012) R: A Language and Environment for Statistical Computing. Available:http://www.R-project.org/.
95. Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. Available:http://CRAN.R-project.org/package=lme4.
96. Christensen RHB (2012) ordinal–Regression Models for Ordinal Data.
97. Baayen RH (2011) languageR: Data sets and functions with “Analyzing Linguistic Data: A practical introduction to statistics”. Available:http://CRAN.R-project.org/package=languageR.
98. Wickham H (2009) ggplot2: elegant graphics for data analysis. Available:http://had.co.nz/ggplot2/book.
99. JL (2006) Plotrix: a package in the red light district of R. R-News 6: 8–12.
100. Urbanek S, Horner J (2012) Cairo: R graphics device using cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. Available:http://CRAN.R-project.org/package=Cairo.
101. OkonechnikovK, GolosovaO, FursovM (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics (Oxford, England) 28: 1166–1167 doi:10.1093/bioinformatics/bts091
102. TamuraK, PetersonD, PetersonN, StecherG, NeiM, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28: 2731–2739 doi:10.1093/molbev/msr121
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 6
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Asthma and the Diversity of Fungal Spores in Air
- Streptolysin O and its Co-Toxin NAD-glycohydrolase Protect Group A from Xenophagic Killing
- A Type IV Pilus Mediates DNA Binding during Natural Transformation in
- Cryotomography of Budding Influenza A Virus Reveals Filaments with Diverse Morphologies that Mostly Do Not Bear a Genome at Their Distal End