#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer


Autoři: Kuang-Yu Chen aff001;  Emmanuel Dos Santos Afonso aff001;  Vincent Enouf aff001;  Catherine Isel aff001;  Nadia Naffakh aff001
Působiště autorů: Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France aff001;  Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France aff002;  Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, Paris, France aff003;  Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Institut Pasteur, Paris, France aff004
Vyšlo v časopise: Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer. PLoS Pathog 15(10): e1008034. doi:10.1371/journal.ppat.1008034
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1008034

Souhrn

The influenza A virus RNA-dependent RNA polymerase complex consists in three subunits, PB2, PB1 and PA, that perform transcription and replication of the viral genome through very distinct mechanisms. Biochemical and structural studies have revealed that the polymerase can adopt multiple conformations and form oligomers. However so far it remained unclear whether the available oligomeric crystal structures represent a functional state of the polymerase. Here we gained new insights into this question, by investigating the incompatibility between non-cognate subunits of influenza polymerase brought together through genetic reassortment. We observed that a 7:1 reassortant virus whose PB2 segment derives from the A/WSN/33 (WSN) virus in an otherwise A/PR/8/34 (PR8) backbone is attenuated, despite a 97% identity between the PR8-PB2 and WSN-PB2 proteins. Independent serial passages led to the selection of phenotypic revertants bearing distinct second-site mutations on PA, PB1 and/or PB2. The constellation of mutations present on one revertant virus was studied extensively using reverse genetics and cell-based reconstitution of the viral polymerase. The PA-E349K mutation appeared to play a major role in correcting the initial defect in replication (cRNA -> vRNA) of the PR8xWSN-PB2 reassortant. Strikingly the PA-E349K mutation, and also the PB2-G74R and PB1-K577G mutations present on other revertants, are located at a dimerization interface of the polymerase. All three restore wild-type-like polymerase activity in a minigenome assay while decreasing the level of polymerase dimerization. Overall, our data show that the polymerase subunits co-evolve to ensure not only optimal inter-subunit interactions within the heterotrimer, but also proper levels of dimerization of the heterotrimer which appears to be essential for efficient viral RNA replication. Our findings point to influenza polymerase dimerization as a feature that is controlled by a complex interplay of genetic determinants, can restrict genetic reassortment, and could become a target for antiviral drug development.

Klíčová slova:

Influenza viruses – Influenza A virus – Viral replication – Microbial mutation – Luciferase – Wireless sensor networks – Dimerization – Polymerases


Zdroje

1. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, et al. Influenza. Nat Rev Dis Primers. 2018;4(1):3. Epub 2018/06/30. doi: 10.1038/s41572-018-0002-y 29955068.

2. Te Velthuis AJ, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016;14(8):479–93. Epub 2016/07/12. doi: 10.1038/nrmicro.2016.87 27396566; PubMed Central PMCID: PMC4966622.

3. Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, et al. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature. 2015;527(7576):114–7. Epub 2015/10/28. doi: 10.1038/nature15525 26503046; PubMed Central PMCID: PMC4783868.

4. Peng Q, Liu Y, Peng R, Wang M, Yang W, Song H, et al. Structural insight into RNA synthesis by influenza D polymerase. Nat Microbiol. 2019. Epub 2019/06/19. doi: 10.1038/s41564-019-0487-5 31209309.

5. Pflug A, Guilligay D, Reich S, Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature. 2014;516(7531):355–60. Epub 2014/11/20. doi: 10.1038/nature14008 25409142.

6. Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, et al. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature. 2014;516(7531):361–6. Epub 2014/11/20. doi: 10.1038/nature14009 25409151.

7. Jorba N, Area E, Ortin J. Oligomerization of the influenza virus polymerase complex in vivo. J Gen Virol. 2008;89(Pt 2):520–4. Epub 2008/01/17. doi: 10.1099/vir.0.83387-0 18198383.

8. Chang S, Sun D, Liang H, Wang J, Li J, Guo L, et al. Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 A resolution. Mol Cell. 2015;57(5):925–35. Epub 2015/01/27. doi: 10.1016/j.molcel.2014.12.031 25620561.

9. Fan H, Walker AP, Carrique L, Keown JR, Serna Martin I, Karia D, et al. Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature. 2019;(in press).

10. Jorba N, Coloma R, Ortin J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 2009;5(5):e1000462. Epub 2009/05/30. doi: 10.1371/journal.ppat.1000462 19478885; PubMed Central PMCID: PMC2682650.

11. York A, Hengrung N, Vreede FT, Huiskonen JT, Fodor E. Isolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proc Natl Acad Sci U S A. 2013;110(45):E4238–45. Epub 2013/10/23. doi: 10.1073/pnas.1315068110 24145413; PubMed Central PMCID: PMC3831450.

12. Lowen AC. Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annu Rev Virol. 2017;4(1):105–21. Epub 2017/05/27. doi: 10.1146/annurev-virology-101416-041726 28548881.

13. Nelson MI, Edelman L, Spiro DJ, Boyne AR, Bera J, Halpin R, et al. Molecular epidemiology of A/H3N2 and A/H1N1 influenza virus during a single epidemic season in the United States. PLoS Pathog. 2008;4(8):e1000133. Epub 2008/08/30. doi: 10.1371/journal.ppat.1000133 18725925; PubMed Central PMCID: PMC2495036.

14. Yoon SW, Webby RJ, Webster RG. Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol. 2014;385:359–75. Epub 2014/07/06. doi: 10.1007/82_2014_396 24990620.

15. White MC, Lowen AC. Implications of segment mismatch for influenza A virus evolution. J Gen Virol. 2018;99(1):3–16. Epub 2017/12/16. doi: 10.1099/jgv.0.000989 29244017; PubMed Central PMCID: PMC5882089.

16. Gerber M, Isel C, Moules V, Marquet R. Selective packaging of the influenza A genome and consequences for genetic reassortment. Trends Microbiol. 2014;22(8):446–55. Epub 2014/05/07. doi: 10.1016/j.tim.2014.04.001 24798745.

17. Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, Rockman S, Laederach A, et al. The structure of the influenza A virus genome. Nat Microbiol. 2019. Epub 2019/07/25. doi: 10.1038/s41564-019-0513-7 31332385.

18. Diederich S, Berhane Y, Embury-Hyatt C, Hisanaga T, Handel K, Cottam-Birt C, et al. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site. J Virol. 2015;89(21):10724–34. Epub 2015/08/08. doi: 10.1128/JVI.01238-15 26246579; PubMed Central PMCID: PMC4621126.

19. Yen HL, Liang CH, Wu CY, Forrest HL, Ferguson A, Choy KT, et al. Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci U S A. 2011;108(34):14264–9. Epub 2011/08/10. doi: 10.1073/pnas.1111000108 21825167; PubMed Central PMCID: PMC3161546.

20. Hara K, Nakazono Y, Kashiwagi T, Hamada N, Watanabe H. Co-incorporation of the PB2 and PA polymerase subunits from human H3N2 influenza virus is a critical determinant of the replication of reassortant ribonucleoprotein complexes. J Gen Virol. 2013;94(Pt 11):2406–16. Epub 2013/08/14. doi: 10.1099/vir.0.053959-0 23939981.

21. Phipps KL, Marshall N, Tao H, Danzy S, Onuoha N, Steel J, et al. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny. J Virol. 2017;91(17). Epub 2017/06/24. doi: 10.1128/JVI.00830-17 28637755; PubMed Central PMCID: PMC5553182.

22. Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y. Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol. 2008;82(23):11880–8. Epub 2008/09/26. doi: 10.1128/JVI.01445-08 18815312; PubMed Central PMCID: PMC2583690.

23. Schrauwen EJ, Herfst S, Chutinimitkul S, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, et al. Possible increased pathogenicity of pandemic (H1N1) 2009 influenza virus upon reassortment. Emerg Infect Dis. 2011;17(2):200–8. Epub 2011/02/05. doi: 10.3201/eid1702.101268 21291589; PubMed Central PMCID: PMC3204778.

24. Vincent AL, Ma W, Lager KM, Janke BH, Richt JA. Swine influenza viruses a North American perspective. Adv Virus Res. 2008;72:127–54. Epub 2008/12/17. doi: 10.1016/S0065-3527(08)00403-X 19081490.

25. Vijaykrishna D, Smith GJ, Pybus OG, Zhu H, Bhatt S, Poon LL, et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature. 2011;473(7348):519–22. Epub 2011/05/27. doi: 10.1038/nature10004 21614079.

26. Octaviani CP, Li C, Noda T, Kawaoka Y. Reassortment between seasonal and swine-origin H1N1 influenza viruses generates viruses with enhanced growth capability in cell culture. Virus Res. 2011;156(1–2):147–50. Epub 2011/01/05. doi: 10.1016/j.virusres.2010.12.014 21195732; PubMed Central PMCID: PMC3045650.

27. Song MS, Pascua PN, Lee JH, Baek YH, Park KJ, Kwon HI, et al. Virulence and genetic compatibility of polymerase reassortant viruses derived from the pandemic (H1N1) 2009 influenza virus and circulating influenza A viruses. J Virol. 2011;85(13):6275–86. Epub 2011/04/22. doi: 10.1128/JVI.02125-10 21507962; PubMed Central PMCID: PMC3126523.

28. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. Rescue of influenza A virus from recombinant DNA. J Virol. 1999;73(11):9679–82. Epub 1999/10/09. 10516084; PubMed Central PMCID: PMC113010.

29. de Wit E, Spronken MI, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Res. 2004;103(1–2):155–61. Epub 2004/05/28. doi: 10.1016/j.virusres.2004.02.028 15163504.

30. Czudai-Matwich V, Otte A, Matrosovich M, Gabriel G, Klenk HD. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol. 2014;88(16):8735–42. Epub 2014/06/06. doi: 10.1128/JVI.00422-14 24899203; PubMed Central PMCID: PMC4136279.

31. Gabriel G, Herwig A, Klenk HD. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog. 2008;4(2):e11. Epub 2008/02/06. doi: 10.1371/journal.ppat.0040011 18248089; PubMed Central PMCID: PMC2222953.

32. Gastaminza P, Perales B, Falcon AM, Ortin J. Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription. J Virol. 2003;77(9):5098–108. Epub 2003/04/15. doi: 10.1128/JVI.77.9.5098-5108.2003 12692212; PubMed Central PMCID: PMC153989.

33. Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S, Round A, et al. Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains. Mol Cell. 2016;61(1):125–37. Epub 2015/12/30. doi: 10.1016/j.molcel.2015.11.016 26711008; PubMed Central PMCID: PMC4712189.

34. Nilsson-Payant BE, Sharps J, Hengrung N, Fodor E. The Surface-Exposed PA(51–72)-Loop of the Influenza A Virus Polymerase Is Required for Viral Genome Replication. J Virol. 2018;92(16). Epub 2018/06/08. doi: 10.1128/JVI.00687-18 29875249; PubMed Central PMCID: PMC6069170.

35. Munier S, Rolland T, Diot C, Jacob Y, Naffakh N. Exploration of binary virus-host interactions using an infectious protein complementation assay. Mol Cell Proteomics. 2013;12(10):2845–55. Epub 2013/07/03. doi: 10.1074/mcp.M113.028688 23816991; PubMed Central PMCID: PMC3790295.

36. Crepin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok RW. Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol. 2010;84(18):9096–104. Epub 2010/07/02. doi: 10.1128/JVI.00995-10 20592097; PubMed Central PMCID: PMC2937609.

37. Oishi K, Yamayoshi S, Kawaoka Y. Identification of Amino Acid Residues in Influenza A Virus PA-X That Contribute to Enhanced Shutoff Activity. Front Microbiol. 2019;10:432. Epub 2019/03/22. doi: 10.3389/fmicb.2019.00432 30894843; PubMed Central PMCID: PMC6414799.

38. Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, et al. Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci U S A. 2010;107(10):4687–92. Epub 2010/02/24. doi: 10.1073/pnas.0912807107 20176961; PubMed Central PMCID: PMC2842136.

39. Kamiki H, Matsugo H, Kobayashi T, Ishida H, Takenaka-Uema A, Murakami S, et al. A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice. Viruses. 2018;10(11). Epub 2018/11/23. doi: 10.3390/v10110653 30463209; PubMed Central PMCID: PMC6266086.

40. Rolling T, Koerner I, Zimmermann P, Holz K, Haller O, Staeheli P, et al. Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice. J Virol. 2009;83(13):6673–80. Epub 2009/05/01. doi: 10.1128/JVI.00212-09 19403683; PubMed Central PMCID: PMC2698553.

41. Pleschka S, Jaskunas R, Engelhardt OG, Zurcher T, Palese P, Garcia-Sastre A. A plasmid-based reverse genetics system for influenza A virus. J Virol. 1996;70(6):4188–92. Epub 1996/06/01. 8648766; PubMed Central PMCID: PMC190316.

42. Crescenzo-Chaigne B, Naffakh N, van der Werf S. Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo. Virology. 1999;265(2):342–53. Epub 1999/12/22. doi: 10.1006/viro.1999.0059 10600605.

43. Cassonnet P, Rolloy C, Neveu G, Vidalain PO, Chantier T, Pellet J, et al. Benchmarking a luciferase complementation assay for detecting protein complexes. Nat Methods. 2011;8(12):990–2. Epub 2011/12/01. doi: 10.1038/nmeth.1773 22127214.

44. Matrosovich M, Matrosovich T, Garten W, Klenk HD. New low-viscosity overlay medium for viral plaque assays. Virol J. 2006;3:63. Epub 2006/09/02. doi: 10.1186/1743-422X-3-63 16945126; PubMed Central PMCID: PMC1564390.

45. Watson SJ, Welkers MR, Depledge DP, Coulter E, Breuer JM, de Jong MD, et al. Viral population analysis and minority-variant detection using short read next-generation sequencing. Philos Trans R Soc Lond B Biol Sci. 2013;368(1614):20120205. Epub 2013/02/06. doi: 10.1098/rstb.2012.0205 23382427; PubMed Central PMCID: PMC3678329.

46. Kawakami E, Watanabe T, Fujii K, Goto H, Watanabe S, Noda T, et al. Strand-specific real-time RT-PCR for distinguishing influenza vRNA, cRNA, and mRNA. J Virol Methods. 2011;173(1):1–6. Epub 2010/12/28. doi: 10.1016/j.jviromet.2010.12.014 21185869; PubMed Central PMCID: PMC3049850.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#