Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG
Autoři:
Ogan K. Kumova aff001; Adam J. Fike aff001; Jillian L. Thayer aff001; Linda T. Nguyen aff002; Joshua Chang Mell aff001; Judy Pascasio aff003; Christopher Stairiker aff001; Leticia G. Leon aff004; Peter D. Katsikis aff004; Alison J. Carey aff001
Působiště autorů:
Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
aff001; Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
aff002; Pathology, Drexel University College of Medicine, Philadelphia, PA, United States of America
aff003; Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
aff004
Vyšlo v časopise:
Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog 15(10): e32767. doi:10.1371/journal.ppat.1008072
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1008072
Souhrn
Respiratory viral infections contribute substantially to global infant losses and disproportionately affect preterm neonates. Using our previously established neonatal murine model of influenza infection, we demonstrate that three-day old mice are exceptionally sensitive to influenza virus infection and exhibit high mortality and viral load. Intranasal pre- and post-treatment of neonatal mice with Lactobacillus rhamnosus GG (LGG), an immune modulator in respiratory viral infection of adult mice and human preterm neonates, considerably improves neonatal mice survival after influenza virus infection. We determine that both live and heat-killed intranasal LGG are equally efficacious in protection of neonates. Early in influenza infection, neonatal transcriptional responses in the lung are delayed compared to adults. These responses increase by 24 hours post-infection, demonstrating a delay in the kinetics of the neonatal anti-viral response. LGG pretreatment improves immune gene transcriptional responses during early infection and specifically upregulates type I IFN pathways. This is critical for protection, as neonatal mice intranasally pre-treated with IFNβ before influenza virus infection are also protected. Using transgenic mice, we demonstrate that the protective effect of LGG is mediated through a MyD88-dependent mechanism, specifically via TLR4. LGG can improve both early control of virus and transcriptional responsiveness and could serve as a simple and safe intervention to protect neonates.
Klíčová slova:
Neonates – Respiratory infections – Viral transmission and infection – Influenza viruses – Mouse models – Interferons – Influenza – Probiotics
Zdroje
1. Leader S, Kohlhase K. Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. The Journal of pediatrics. 2003;143(5 Suppl):S127–32. Epub 2003/11/15. doi: 10.1067/s0022-3476(03)00510-9 14615711.
2. Lafond KE, Nair H, Rasooly MH, Valente F, Booy R, Rahman M, et al. Global Role and Burden of Influenza in Pediatric Respiratory Hospitalizations, 1982–2012: A Systematic Analysis. PLoS medicine. 2016;13(3):e1001977. Epub 2016/03/25. doi: 10.1371/journal.pmed.1001977 27011229; PubMed Central PMCID: PMC4807087.
3. Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, et al. The burden of respiratory syncytial virus infection in young children. The New England journal of medicine. 2009;360(6):588–98. Epub 2009/02/07. doi: 10.1056/NEJMoa0804877 19196675; PubMed Central PMCID: PMC4829966.
4. Berard A, Le Tiec M, De Vera MA. Study of the costs and morbidities of late-preterm birth. Archives of disease in childhood Fetal and neonatal edition. 2012;97(5):F329–34. Epub 2012/08/31. doi: 10.1136/fetalneonatal-2011-300969 22933090.
5. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–26. Epub 2017/01/24. doi: 10.1038/nm.4272 28112736; PubMed Central PMCID: PMC5345907.
6. Bosch A, de Steenhuijsen Piters WAA, van Houten MA, Chu M, Biesbroek G, Kool J, et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am J Respir Crit Care Med. 2017;196(12):1582–90. Epub 2017/07/01. doi: 10.1164/rccm.201703-0554OC 28665684.
7. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. Epub 2016/06/17. doi: 10.1126/scitranslmed.aad7121 27306664; PubMed Central PMCID: PMC5308924.
8. Man WH, Clerc M, de Steenhuijsen Piters WAA, van Houten MA, Chu M, Kool J, et al. Loss of Microbial Topography between Oral and Nasopharyngeal Microbiota and Development of Respiratory Infections Early in Life. Am J Respir Crit Care Med. 2019. Epub 2019/03/19. doi: 10.1164/rccm.201810-1993OC 30883192.
9. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37(1):158–70. Epub 2012/06/19. doi: 10.1016/j.immuni.2012.04.011 [pii]. 22705104; PubMed Central PMCID: PMC3679670.
10. Harata G, He F, Hiruta N, Kawase M, Kubota A, Hiramatsu M, et al. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett Appl Microbiol. 2010;50(6):597–602. Epub 2010/05/05. doi: 10.1111/j.1472-765X.2010.02844.x [pii]. 20438620.
11. Jung YJ, Lee YT, Ngo VL, Cho YH, Ko EJ, Hong SM, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep. 2017;7(1):17360. Epub 2017/12/14. doi: 10.1038/s41598-017-17487-8 29234060; PubMed Central PMCID: PMC5727132.
12. Park MK, Ngo V, Kwon YM, Lee YT, Yoo S, Cho YH, et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity. PLoS One. 2013;8(10):e75368. Epub 2013/10/15. doi: 10.1371/journal.pone.0075368 24124485; PubMed Central PMCID: PMC3790790.
13. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9. Epub 2011/02/25. doi: 10.1056/NEJMoa1007302 21345099.
14. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A. 2011;108(13):5354–9. Epub 2011/03/16. doi: 10.1073/pnas.1019378108 [pii]. 21402903; PubMed Central PMCID: PMC3069176.
15. Yasui H, Kiyoshima J, Hori T. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota. Clin Diagn Lab Immunol. 2004;11(4):675–9. Epub 2004/07/10. doi: 10.1128/CDLI.11.4.675-679.2004 [pii]. 15242940; PubMed Central PMCID: PMC440622.
16. Hori T, Kiyoshima J, Shida K, Yasui H. Effect of intranasal administration of Lactobacillus casei Shirota on influenza virus infection of upper respiratory tract in mice. Clin Diagn Lab Immunol. 2001;8(3):593–7. Epub 2001/05/01. doi: 10.1128/CDLI.8.3.593-597.2001 11329464; PubMed Central PMCID: PMC96107.
17. Hori T, Kiyoshima J, Shida K, Yasui H. Augmentation of cellular immunity and reduction of influenza virus titer in aged mice fed Lactobacillus casei strain Shirota. Clin Diagn Lab Immunol. 2002;9(1):105–8. Epub 2002/01/05. doi: 10.1128/CDLI.9.1.105-108.2002 11777838; PubMed Central PMCID: PMC119906.
18. Gabryszewski SJ, Bachar O, Dyer KD, Percopo CM, Killoran KE, Domachowske JB, et al. Lactobacillus-mediated priming of the respiratory mucosa protects against lethal pneumovirus infection. J Immunol. 2011;186(2):1151–61. Epub 2010/12/21. doi: 10.4049/jimmunol.1001751 [pii]. 21169550; PubMed Central PMCID: PMC3404433.
19. Garcia-Crespo KE, Chan CC, Gabryszewski SJ, Percopo CM, Rigaux P, Dyer KD, et al. Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection. Antiviral Res. 2012. Epub 2013/01/01. S0166-3542(12)00302-6 [pii]doi: 10.1016/j.antiviral.2012.12.022 23274789.
20. Hojsak I, Snovak N, Abdovic S, Szajewska H, Misak Z, Kolacek S. Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr. 2010;29(3):312–6. Epub 2009/11/10. doi: 10.1016/j.clnu.2009.09.008 [pii]. 19896252.
21. Hatakka K, Savilahti E, Ponka A, Meurman JH, Poussa T, Nase L, et al. Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ. 2001;322(7298):1327. Epub 2001/06/02. doi: 10.1136/bmj.322.7298.1327 11387176; PubMed Central PMCID: PMC32161.
22. Waki N, Matsumoto M, Fukui Y, Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol. 2014;59(6):565–71. Epub 2014/10/09. doi: 10.1111/lam.12340 25294223; PubMed Central PMCID: PMC4285317.
23. Carey AJ, Gracias DT, Thayer JL, Boesteanu AC, Kumova OK, Mueller YM, et al. Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice. Journal of immunology. 2016;196(6):2602–13. Epub 2016/02/14. doi: 10.4049/jimmunol.1502126 26873987; PubMed Central PMCID: PMC4779665.
24. Lee DK, Kang JY, Shin HS, Park IH, Ha NJ. Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus. Arch Pharm Res. 2013;36(12):1525–32. Epub 2013/05/10. doi: 10.1007/s12272-013-0141-3 23657805.
25. Kang JY, Lee DK, Ha NJ, Shin HS. Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model. J Microbiol. 2015;53(11):796–803. Epub 2015/10/28. doi: 10.1007/s12275-015-5302-2 26502964.
26. Youn HN, Lee DH, Lee YN, Park JK, Yuk SS, Yang SY, et al. Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antiviral Res. 2012;93(1):138–43. Epub 2011/11/29. doi: 10.1016/j.antiviral.2011.11.004 [pii]. 22120759.
27. Izumo T, Maekawa T, Ida M, Noguchi A, Kitagawa Y, Shibata H, et al. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int Immunopharmacol. 2010;10(9):1101–6. Epub 2010/07/06. doi: 10.1016/j.intimp.2010.06.012 [pii]. 20601181.
28. Garcia-Crespo KE, Chan CC, Gabryszewski SJ, Percopo CM, Rigaux P, Dyer KD, et al. Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection. Antiviral Res. 2013;97(3):270–9. Epub 2013/01/01. doi: 10.1016/j.antiviral.2012.12.022 [pii]. 23274789; PubMed Central PMCID: PMC3608699.
29. Zelaya H, Villena J, Lopez AG, Alvarez S, Aguero G. Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobiotic Lactobacillus rhamnosus CRL1505: role of Toll-like receptor 2. Microbiol Immunol. 2014;58(7):416–26. Epub 2014/06/04. doi: 10.1111/1348-0421.12163 24888715.
30. Sun Y, Jain D, Koziol-White CJ, Genoyer E, Gilbert M, Tapia K, et al. Immunostimulatory Defective Viral Genomes from Respiratory Syncytial Virus Promote a Strong Innate Antiviral Response during Infection in Mice and Humans. PLoS pathogens. 2015;11(9):e1005122. Epub 2015/09/04. doi: 10.1371/journal.ppat.1005122 26336095; PubMed Central PMCID: PMC4559413.
31. Prokopyeva EA, Zinserling VA, Bae YC, Kwon Y, Kurskaya OG, Sobolev IA, et al. Pathology of A(H5N8) (Clade 2.3.4.4) Virus in Experimentally Infected Chickens and Mice. Interdiscip Perspect Infect Dis. 2019;2019:4124865. Epub 2019/07/30. doi: 10.1155/2019/4124865 31354812; PubMed Central PMCID: PMC6637675.
32. Forsythe P. Probiotics and lung immune responses. Ann Am Thorac Soc. 2014;11 Suppl 1:S33–7. Epub 2014/01/21. doi: 10.1513/AnnalsATS.201306-156MG 24437403.
33. Tate MD, Ioannidis LJ, Croker B, Brown LE, Brooks AG, Reading PC. The role of neutrophils during mild and severe influenza virus infections of mice. PLoS One. 2011;6(3):e17618. Epub 2011/03/23. doi: 10.1371/journal.pone.0017618 21423798; PubMed Central PMCID: PMC3056712.
34. Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J, et al. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012;39(12):10957–70. Epub 2012/10/16. doi: 10.1007/s11033-012-1997-x 23065264; PubMed Central PMCID: PMC3487008.
35. Weiss G, Maaetoft-Udsen K, Stifter SA, Hertzog P, Goriely S, Thomsen AR, et al. MyD88 drives the IFN-beta response to Lactobacillus acidophilus in dendritic cells through a mechanism involving IRF1, IRF3, and IRF7. Journal of immunology. 2012;189(6):2860–8. Epub 2012/08/17. doi: 10.4049/jimmunol.1103491 22896628.
36. Miettinen M, Pietila TE, Kekkonen RA, Kankainen M, Latvala S, Pirhonen J, et al. Nonpathogenic Lactobacillus rhamnosus activates the inflammasome and antiviral responses in human macrophages. Gut Microbes. 2012;3(6):510–22. Epub 2012/08/17. doi: 10.4161/gmic.21736 [pii]. 22895087; PubMed Central PMCID: PMC3495788.
37. Hou B, Reizis B, DeFranco AL. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity. 2008;29(2):272–82. Epub 2008/07/29. doi: 10.1016/j.immuni.2008.05.016 18656388; PubMed Central PMCID: PMC2847796.
38. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–51. Epub 2001/07/19. doi: 10.1038/35085597 11460167.
39. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006;24(3):317–27. Epub 2006/03/21. doi: 10.1016/j.immuni.2006.02.004 16546100.
40. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8. Epub 1998/12/16. doi: 10.1126/science.282.5396.2085 9851930.
41. Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. Journal of immunology. 2007;178(4):2448–57. Epub 2007/02/06. doi: 10.4049/jimmunol.178.4.2448 17277152.
42. Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009;183(11):7150–60. Epub 2009/11/18. doi: 10.4049/jimmunol.0901481 [pii]. 19917677.
43. Nguyen M, Leuridan E, Zhang T, De Wit D, Willems FN, 2010 #1585}, Van Damme P, et al. Acquisition of adult-like TLR4 and TLR9 responses during the first year of life. PLoS One. 2010;5(4):e10407. Epub 2010/05/06. doi: 10.1371/journal.pone.0010407 20442853; PubMed Central PMCID: PMC2861003.
44. Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity. 2012;37(5):771–83. Epub 2012/11/20. doi: 10.1016/j.immuni.2012.10.014 23159225; PubMed Central PMCID: PMC3538030.
45. Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O'Leary CE, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med. 2014;20(5):524–30. Epub 2014/04/22. doi: 10.1038/nm.3542 [pii]. 24747744; PubMed Central PMCID: PMC4016187.
46. Zhang X, Zhivaki D, Lo-Man R. Unique aspects of the perinatal immune system. Nat Rev Immunol. 2017;17(8):495–507. doi: 10.1038/nri.2017.54 28627520.
47. Kallapur SG, Jobe AH, Ball MK, Nitsos I, Moss TJ, Hillman NH, et al. Pulmonary and systemic endotoxin tolerance in preterm fetal sheep exposed to chorioamnionitis. J Immunol. 2007;179(12):8491–9. Epub 2007/12/07. doi: 10.4049/jimmunol.179.12.8491 18056396.
48. Hancock AS, Stairiker CJ, Boesteanu AC, Monzon-Casanova E, Lukasiak S, Mueller YM, et al. Transcriptome Analysis of Infected and Bystander Type 2 Alveolar Epithelial Cells during Influenza A Virus Infection Reveals In Vivo Wnt Pathway Downregulation. J Virol. 2018;92(21). Epub 2018/08/17. doi: 10.1128/JVI.01325-18 30111569; PubMed Central PMCID: PMC6189488.
49. Zhai Y, Franco LM, Atmar RL, Quarles JM, Arden N, Bucasas KL, et al. Host Transcriptional Response to Influenza and Other Acute Respiratory Viral Infections—A Prospective Cohort Study. PLoS Pathog. 2015;11(6):e1004869. Epub 2015/06/13. doi: 10.1371/journal.ppat.1004869 26070066; PubMed Central PMCID: PMC4466531.
50. Liu M, Chen F, Liu T, Chen F, Liu S, Yang J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017;19(12):580–6. Epub 2017/09/18. doi: 10.1016/j.micinf.2017.08.008 28918004.
51. Saugstad OD. Oxidative stress in the newborn—a 30-year perspective. Biol Neonate. 2005;88(3):228–36. Epub 2005/10/08. doi: 10.1159/000087586 16210845.
52. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci U S A. 2014;111(2):805–10. Epub 2013/12/18. doi: 10.1073/pnas.1310750111 24344318; PubMed Central PMCID: PMC3896155.
53. Cope EK, Lynch SV. Novel microbiome-based therapeutics for chronic rhinosinusitis. Curr Allergy Asthma Rep. 2015;15(3):504. Epub 2015/03/18. doi: 10.1007/s11882-014-0504-y 25777787.
54. Lal CV, Travers C, Aghai ZH, Eipers P, Jilling T, Halloran B, et al. The Airway Microbiome at Birth. Scientific reports. 2016;6:31023. Epub 2016/08/05. doi: 10.1038/srep31023 27488092; PubMed Central PMCID: PMC4973241.
55. Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature. 2017;548(7668):407–12. Epub 2017/08/17. doi: 10.1038/nature23480 28813414.
56. Pellaton C, Nutten S, Thierry AC, Boudousquie C, Barbier N, Blanchard C, et al. Intragastric and Intranasal Administration of Lactobacillus paracasei NCC2461 Modulates Allergic Airway Inflammation in Mice. Int J Inflam. 2012;2012:686739. Epub 2012/07/05. doi: 10.1155/2012/686739 22762009; PubMed Central PMCID: PMC3382844.
57. Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357(6350):498–502. Epub 2017/08/05. doi: 10.1126/science.aam5336 28774928; PubMed Central PMCID: PMC5753406.
58. Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 2017. Epub 2017/10/27. doi: 10.1038/mi.2017.75 29067994.
59. Kostric M, Milger K, Krauss-Etschmann S, Engel M, Vestergaard G, Schloter M, et al. Development of a Stable Lung Microbiome in Healthy Neonatal Mice. Microb Ecol. 2018;75(2):529–42. Epub 2017/09/15. doi: 10.1007/s00248-017-1068-x 28905200.
60. Macho Fernandez E, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut. 2011;60(8):1050–9. Epub 2011/04/08. doi: 10.1136/gut.2010.232918 21471573.
61. Yoon HS. Neonatal innate immunity and Toll-like receptor. Korean J Pediatr. 2010;53(12):985–8. Epub 2011/01/22. doi: 10.3345/kjp.2010.53.12.985 21253311; PubMed Central PMCID: PMC3021731.
62. Zhao J, Kim KD, Yang X, Auh S, Fu YX, Tang H. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A. 2008;105(21):7528–33. Epub 2008/05/21. doi: 10.1073/pnas.0800152105 18490660; PubMed Central PMCID: PMC2396698.
63. Villena J, Kitazawa H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus jensenii TL2937. Front Immunol. 2014;4:512. Epub 2014/01/25. doi: 10.3389/fimmu.2013.00512 24459463; PubMed Central PMCID: PMC3890654.
64. Plantinga TS, van Maren WW, van Bergenhenegouwen J, Hameetman M, Nierkens S, Jacobs C, et al. Differential Toll-like receptor recognition and induction of cytokine profile by Bifidobacterium breve and Lactobacillus strains of probiotics. Clin Vaccine Immunol. 2011;18(4):621–8. Epub 2011/02/04. doi: 10.1128/CVI.00498-10 21288993; PubMed Central PMCID: PMC3122558.
65. Lee SI, Kim HS, Koo JM, Kim IH. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-kappaB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge. Br J Nutr. 2016;115(4):567–75. Epub 2016/01/16. doi: 10.1017/S0007114515004857 26769562.
66. Giahi L, Aumueller E, Elmadfa I, Haslberger AG. Regulation of TLR4, p38 MAPkinase, IkappaB and miRNAs by inactivated strains of lactobacilli in human dendritic cells. Benef Microbes. 2012;3(2):91–8. Epub 2012/04/06. doi: 10.3920/BM2011.0052 22476320.
67. Pena JA, Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol. 2003;5(4):277–85. Epub 2003/04/05. 12675685.
68. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32. Epub 2007/02/06. doi: 10.1016/j.smim.2006.12.004 17275323.
69. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1–20. Epub 2008/12/17. doi: 10.1196/annals.1443.020 [pii]. 19076341.
70. Szretter KJ, Gangappa S, Belser JA, Zeng H, Chen H, Matsuoka Y, et al. Early control of H5N1 influenza virus replication by the type I interferon response in mice. Journal of virology. 2009;83(11):5825–34. Epub 2009/03/20. doi: 10.1128/JVI.02144-08 19297490; PubMed Central PMCID: PMC2681972.
71. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, et al. Functional role of type I and type II interferons in antiviral defense. Science. 1994;264(5167):1918–21. Epub 1994/06/24. doi: 10.1126/science.8009221 8009221.
72. Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunological reviews. 2013;255(1):25–39. Epub 2013/08/21. doi: 10.1111/imr.12101 23947345.
73. Katze MG, He Y, Gale M Jr., Viruses and interferon: a fight for supremacy. Nature reviews Immunology. 2002;2(9):675–87. Epub 2002/09/05. doi: 10.1038/nri888 12209136.
74. Cormier SA, Shrestha B, Saravia J, Lee GI, Shen L, DeVincenzo JP, et al. Limited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection. Journal of virology. 2014;88(16):9350–60. Epub 2014/06/13. doi: 10.1128/JVI.00818-14 24920801; PubMed Central PMCID: PMC4136292.
75. Zelaya H, Tada A, Vizoso-Pinto MG, Salva S, Kanmani P, Aguero G, et al. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res. 2015;64(8):589–602. Epub 2015/06/15. doi: 10.1007/s00011-015-0837-6 26072063.
76. Pulendran B, Maddur MS. Innate immune sensing and response to influenza. Curr Top Microbiol Immunol. 2015;386:23–71. Epub 2014/08/01. doi: 10.1007/82_2014_405 25078919; PubMed Central PMCID: PMC4346783.
77. Angelone DF, Wessels MR, Coughlin M, Suter EE, Valentini P, Kalish LA, et al. Innate immunity of the human newborn is polarized toward a high ratio of IL-6/TNF-alpha production in vitro and in vivo. Pediatric research. 2006;60(2):205–9. Epub 2006/07/26. doi: 10.1203/01.pdr.0000228319.10481.ea 16864705.
78. van Haren SD, Ganapathi L, Bergelson I, Dowling DJ, Banks M, Samuels RC, et al. In vitro cytokine induction by TLR-activating vaccine adjuvants in human blood varies by age and adjuvant. Cytokine. 2016;83:99–109. Epub 2016/04/16. doi: 10.1016/j.cyto.2016.04.001 27081760.
79. Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nature reviews Immunology. 2012;12(3):168–79. Epub 2012/02/04. doi: 10.1038/nri3151 22301850; PubMed Central PMCID: PMC3677579.
80. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. Epub 2006/02/25. doi: 10.1016/j.cell.2006.02.015 16497588.
81. Jewell NA, Vaghefi N, Mertz SE, Akter P, Peebles RS Jr., Bakaletz LO, et al. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. Journal of virology. 2007;81(18):9790–800. Epub 2007/07/13. doi: 10.1128/JVI.00530-07 17626092; PubMed Central PMCID: PMC2045394.
82. Bhoj VG, Sun Q, Bhoj EJ, Somers C, Chen X, Torres JP, et al. MAVS and MyD88 are essential for innate immunity but not cytotoxic T lymphocyte response against respiratory syncytial virus. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(37):14046–51. Epub 2008/09/11. doi: 10.1073/pnas.0804717105 18780793; PubMed Central PMCID: PMC2532974.
83. Demoor T, Petersen BC, Morris S, Mukherjee S, Ptaschinski C, De Almeida Nagata DE, et al. IPS-1 signaling has a nonredundant role in mediating antiviral responses and the clearance of respiratory syncytial virus. Journal of immunology. 2012;189(12):5942–53. Epub 2012/11/09. doi: 10.4049/jimmunol.1201763 23136205; PubMed Central PMCID: PMC3888965.
84. Schijf MA, Lukens MV, Kruijsen D, van Uden NO, Garssen J, Coenjaerts FE, et al. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies. PLoS One. 2013;8(11):e81695. Epub 2013/12/05. doi: 10.1371/journal.pone.0081695 24303065; PubMed Central PMCID: PMC3841124.
85. Smit JJ, Rudd BD, Lukacs NW. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. The Journal of experimental medicine. 2006;203(5):1153–9. Epub 2006/05/10. doi: 10.1084/jem.20052359 16682497; PubMed Central PMCID: PMC2121199.
86. Goritzka M, Makris S, Kausar F, Durant LR, Pereira C, Kumagai Y, et al. Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. The Journal of experimental medicine. 2015;212(5):699–714. Epub 2015/04/22. doi: 10.1084/jem.20140825 25897172; PubMed Central PMCID: PMC4419339.
87. Cao W, Liu YJ. Innate immune functions of plasmacytoid dendritic cells. Current opinion in immunology. 2007;19(1):24–30. Epub 2006/11/23. doi: 10.1016/j.coi.2006.11.004 17113765.
88. Borowski AB, Boesteanu AC, Mueller YM, Carafides C, Topham DJ, Altman JD, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol. 2007;179(10):6494–503. Epub 2007/11/06. 179/10/6494 [pii]. doi: 10.4049/jimmunol.179.10.6494 17982038.
89. Ward CL, Dempsey MH, Ring CJ, Kempson RE, Zhang L, Gor D, et al. Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. J Clin Virol. 2004;29(3):179–88. Epub 2004/02/14. doi: 10.1016/S1386-6532(03)00122-7 [pii]. 14962787.
90. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. Epub 2010/10/29. doi: 10.1186/gb-2010-11-10-r106 20979621; PubMed Central PMCID: PMC3218662.
91. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. Epub 2014/12/18. doi: 10.1186/s13059-014-0550-8 25516281; PubMed Central PMCID: PMC4302049.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2019 Číslo 10
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Alterations in cellular expression in EBV infected epithelial cell lines and tumors
- Correction: A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes
- Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer
- Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling