#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Advances in immunoassays by luminescence and electrochemical detection


Authors: P. Štern
Authors place of work: Mimoňská 637/16, 190 00 Praha 9
Published in the journal: Klin. Biochem. Metab., 24, 2016, No. 3, p. 120-126

Summary

The first part of the educational article deals with luminescence methods as follows: lanthanide-based time-resolved luminescence, enzyme-amplified lanthanide luminescence, homogeneous immunoassays with luminescence quenching, chemiluminescence, electrochemiluminescence (competitive assay, sandwich-type assay, and direct interaction) and simultaneous immunoassays options with electrochemical luminescence detection. The second part covers immunoassays with electrochemical detection, particularly anodic stripping voltammetry and square-wave voltammetry. Many kinds of nanomaterials are used as labels, e.g. gold, silver, semiconductors (CdS, PbS, ZnS, CuS), carbon nanotubes (enzyme-loa-ded), apoferritin (hexacyanoferrate loaded, in some cases Cd2+ or Pb2+ ions are used), liposomes (hexacyanoferrate loaded), silica particles (by covalently binding polyguanine or with peroxidase & thionine loaded), ferrocene microcrystals, etc.

Keywords:
Lanthanide-based luminescence, chemiluminescence, electrochemiluminescence, electrochemical immunoassays, nanomaterials.


Zdroje

1. Berthold, F., Tarkkanen, V. Luminometer development in the last four decades: recollections of two entrepreneurs. Luminescence, 2013, Vol. 28 (1), p. 1–6.

2. Hagan, A. K., Zuchner, T. Lanthanide-based time-resolved luminescence immunoassays. Anal. Bioanal. Chem., 2011, Vol. 400(9), p. 2847–2864.

3. Soukka, T., Antonen, K., Härmä, H., Pelkkikangas, A. M., Huhtinen, P., Lövgren, T. Highly sensitive immunoassay of free prostatespecific antigen in serum using europium(III) nanoparticle label technology. Clin. Chim. Acta, 2003, Vol. 328(1-2), p. 45–58.

4. Christopoulos, T. K., Diamandis, E. P. Enzymatically amplified time-resolved fluorescence immunoassay with terbium chelates. Anal. Chem., 1992, Vol. 64(4), p. 342–346.

5. Jürgens, G., Hermann, A., Aktuna, D., Petek, W. Dissociation enhanced lanthanide fluorescence immunoassay of lipoprotein(a) in serum. Clin. Chem., 1992, Vol. 38(6), p. 853–859.

6. Myyryläinen, T., Talha, S., Swaminathan, S., et al. Simultaneous detection of human immunodeficiency virus 1 and hepatitis B virus infections using a dual-label time-resolved fluorometric assay. J. Nanobiotechnol., 2010, Vol. 8(1), p. 27–32.

7. Wang, F., Tan, W., Zhang, Y., Fan, X., Wang, M. Luminescent nanomaterials for biological labelling. Nanotechnology, 2006, Vol. 17(1), p. R1–R13.

8. Gudgin Dickson, E. F., Pollak, A., Diamandis, E. P. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J. Photochem. Photobiol. B Biol., 1995, Vol. 27(1), p. 3–19.

9. Xue, Ch., Xue, Y., Dai, L., Urbas, A., Li, Q. Size- and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye. Adv. Optical Mater., 2013, Vol. 1(8), p. 581–587.

10. Fan, A., Cao, Z., Li, H., Kai, M., Lu, J. Chemiluminescence platforms in immunoassay and DNA analyses. Anal. Sci., 2009, Vol. 25 (5), p. 587-597.

11. Roda, A., Guardigli, M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal. Bioanal. Chem., 2012, Vol. 402(1), p. 69–76.

12. Marzocchi, E., Grilli, S., Della, C. L., Prodi, L., Mirasoli, M., Roda, A. Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Anal. Biochem., 2008, Vol. 377(2), p. 189–194.

13. Natrajan, A., Sharpe, D., Costello, J., Jiang, Q. Enhanced immunoassay sensitivity using chemiluminescent acridinium esters with increased light output. Anal. Biochem., 2010, Vol. 406(2), p. 204–213.

14. Wang, Z., Duan, N., Li, J., Ye, J., Ma, S., Le, G. Ultrasensitive chemiluminescent immunoassay of Salmonella with silver enhancement of nanogold labels. Luminescence, 2011, Vol. 26(2), p. 136–141.

15. Muzyka K. Current trends in the development of the electrochemiluminescent immunosensors. Biosensors and Bioelectronics, 2014, Vol. 54, p. 393–407.

16. Wei, H., Wang, E. Solid-state electrochemiluminescence of tris(2,2´-bipyridyl) ruthenium. Trends in Anal.Chem., 2008, Vol. 27(5), p. 447–459.

17. Wang, L., Wei, W., Han, J., Fu, Z. Individually addressable electrode array for multianalyte electrochemiluminescent immunoassay based on a sequential triggering strategy. Analyst, 2012, Vol. 137(6), p. 735–740.

18. Cao, Y., Yuan, R., Chai, Y., et al. A solid-state electrochemiluminescence immunosensor based on MWCNTs-nafion and Ru(bpy)32+/nano-Pt nanocomposites for detection of α-fetoprotein. Electroanal., 2011, Vol. 23(6), p. 1418–1426.

19. Zhan, W., Bard, A. J. Electrogenerated chemiluminescence. Immunoassay of human C-reactive protein by using Ru(bpy)32+- encapsulated liposomes as labels. Anal. Chem., 2007, Vol. 79(2), 459–463.

20. Wang, H., Sun, D., Tan, Z., Gong, W., Wang, L. Electrochemiluminescence immunosensor for α-fetoprotein using Ru(bpy)32+- encapsulated liposome as labels. Colloids Surf. B, 2011, Vol. 84(2), p. 515–519.

21. Guo, Z., Hao, T., Duan, J., Wang, S., Wei, D. Electrochemiluminescence immunosensor based on graphene–CdS quantum dots–agarose composite for the ultrasensitive detection of alpha fetoprotein. Talanta, 2012, Vol. 89(1), p. 27–32.

22. Pei, X., Zhang, B., Tang, J., Liu, B., Lai, W., Tang, D. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Anal. Chim. Acta, 2013, Vol. 758(1), p. 1–18.

23. Algar, W. R., Tavares, A. J., Krull, U. J. Beyond labels: A review of the application of quantum dots as integra-ted components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta, 2010, Vol. 673(1), p. 1–25.

24. Liu, G., Lin, Y. Nanomaterial labels in electrochemical immunosensors and immunoassays. Talanta, 2007, Vol. 74(3), p. 308–317.

25. Dequaire, M., Degrand, C., Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem., 2000, Vol. 72(22), p. 5521–5528.

26. Chu, X., Fu, X., Chen, K., Shen, G., Yu, R. Biosens. Bioelectron., 2005, Vol. 20(9), p. 1805–1812.

27. Liu, G., Wang, J., Kim, J., Jan, M. R., Collins, G. E. Electrochemical coding for multiplexed immunoassays of proteins. Anal. Chem., 2004, Vol. 76(23), p. 7126–7130.

28. Wang, J., Liu, G., Jan, M. R. J. Am. Chem. Soc., Ultrasensitive electrical biosensing of proteins and DNA:  Carbon-nanotube derived amplification of the recognition and transduction events. 2004, Vol. 126(10), p. 3010–3011.

29. Liu, G., Wang, J., Wu, H., Lin, Y. Anal. Chem., Versatile apoferritin nanoparticle labels for assay of protein. 2006, Vol. 78(21), p. 7417–7423.

30. Liu, G., Wu, H., Dohnalkova, A., Lin, Y. Apoferritin-templated synthesis of encoded metallic phosphate nanoparticle tags. Anal. Chem., 2007, Vol. 79(15), p. 5614–5619.

31. Lee, K. S., Kim, T., Shin, M., Lee, W., Park, J. Disposable liposome immunosensor for theophylline combining an immunochromatographic membrane and a thick-®lm electrode. Anal. Chim. Acta, 1999, Vol. 380(1), p. 17–26.

32. Wang, J., Liu, G., Lin, Y. Electroactive silica nanoparticles for biological labeling. Small, 2006, Vol. 2(10), p. 1134–1138.

33. Tang, D., Su, B., Tang, J., Ren, J., Chen, G. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal. Chem., 2010, Vol. 82(4), p. 1527–1534.

34. Mak, W. C., Cheung, K. Y., Trau, D., Warsinke, A., Scheller, F., Renneberg, R. Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. Anal. Chem., 2005, Vol. 77(9), p. 2835–2841.

Štítky
Clinical biochemistry Nuclear medicine Nutritive therapist
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#