Analysis of parameters of signal pathway of myeloma bone disease in multiple myeloma
Authors:
P. Krhovská 1; Z. Heřmanová 2; P. Petrová 3; J. Zapletalová 4; T. Pika 1; J. Bačovský 1; V. Ščudla 1; J. Minařík 1
Authors place of work:
Hemato-onkologická klinika, Fakultní nemocnice Olomouc a Lékařská fakulta Univerzity Palackého v Olomouci
1; Ústav imunologie, Fakultní nemocnice Olomouc a Lékařská fakulta Univerzity Palackého v Olomouci
2; Oddělení klinické biochemie, Fakultní nemocnice Olomouc a Lékařská fakulta Univerzity Palackého v Olomouci
3; Ústav lékařské biofyziky, Lékařská fakulta Univerzity Palackého v Olomouci
4
Published in the journal:
Klin. Biochem. Metab., 24, 2016, No. 3, p. 136-140
Summary
Objective:
Our aim was to compare serum levels of selected markers of bone metabolism and bone marrow microenvironment to the activity of multiple myeloma (MM).
Material and methods:
Our 94 patients’ cohort consisted of 58 patients with active multiple myeloma (AMM), 12 with smoldering myeloma (SMM) and 24 individuals with monoclonal gammapathy of undetermined significance (MGUS).
Following parameters of bone marrow microenvironment and bone metabolism were assessed: Hepatocyte growth factor (HGF), Syndecan-1 (SYN-1), Osteoprotegerin (OPG), Macrophage inflammatory protein 1α (MIP-1α), Activin A, Annexin A2, Sclerostin, Matrix metalloproteinase 9 (MMP9), Dickkopf-related protein 1 (DKK-1), and compared within AMM, SMM and MGUS. For statistics we used Mann-Whitney U test with Bonferroni correction at p <0.05.
Results:
In comparison of MM and MGUS we found in MM significantly higher serum levels of HGF (median = M 2997 vs 1748 ng/L, p=0.0002), MIP-1α (M 25.5 vs 22.4 ng/L, p=0.018), SYN-1 (M 67.1 vs 21.1 µg/L, p<0,0001) and DKK-1 (M 3303 vs 2733 ng/L, p=0.029). In comparison of AMM and SMM we found in AMM higher serum levels of DKK-1 (M 3303 vs 2196 ng/L, p=0.042) and Annexin A2 (M 37.5 vs 26.5 µg/L, p=0.015). In comparison of MGUS and SMM we found in SMM higher levels of SYN-1 (M 67.1 vs 33.1 µg/L, p=0.023).
Conclusion:
Analysis of serum levels of parameters of bone marrow microenvironment and bone metabolism showed thein relationship to activity of monoclonal gammopathies, especially in the case of HGF, MIP-1α, SYN-1, DKK-1 and Annexin A2.
Keywords:
multiple myeloma; myeloma bone disease; parameters of bone marrow microenvironment.
Zdroje
1. Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol, 2014, 15: p. 538-548.
2. Sezer, O. Myeloma bone disease: recent advances in biology, diagnosis, and treatment. Oncologist, 2009; 14:276-283.
3. Ščudla, V., Budíková, M., Petrová, P. et al. Analýza sérových hladin vybraných biologických ukazatelů u monoklonální gamapatie nejistého významu a mnohočetného myelomu. Klin Onkol, 2010, 23: p. 171-181.
4. Dimopoulos, M., Terpos, E., Comenzo, R. L. et al. International Myeloma Working Group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia, 2009, 23: p. 1545-1556.
5. Minařík, J., Hrbek, J., Krhovská, P. et al. Racionální algoritmus zobrazovacích vyšetření u mnohočetného myelomu v podmínkách České republiky, Transfuze Hematol. dnes, 2015, 4: p. 200-205.
6. Roodman, G. D. Pathogenesis of myeloma bone dise-ase. Leukemia, 2009, 23: p. 435-441.
7. Mundy, G. R., Raisz, L. G., Cooper, R. A. et al. Evidence for the secretion of an osteoclast stimulating factor in myeloma. New Engl J Med, 1974, 291: p. 1041-1046.
8. Ščudla, V., Petrová, P., Pika, T. et al. Analysis of serum levels of Dickkopf-1 (DKK-1) in monoclonal gammopathy of undetermined significance and multiple myeloma. Čas. lék. čes., 2015, 154: p. 181-188.
9. Durie, B. G., Salmon, S. E. A clinical staging system for multiple myeloma, Correlation of Measured Myeloma Cell Mass with Presenting. Cancer, 1975, 36: p. 842-854.
10. Terpos, E., Politou, M., Viniou, N. et al. Significance of macrophage inflammatory protein-1 alpha (MIP-1α) in multiple myeloma. Leukemia & Lymphoma, 2005, 46: p. 1699-1707.
11. Terpos, E., Tasidou, A., Roussou, M. et al. Increased expression of macrophage infl ammatory protein-1 alpha on trephine biopsies correlates with advanced myeloma, extensive bone disease and elevated microvessel density in newly diagnosed patients with multiple myeloma. Haematologica, 2009, 94: p. 146-146.
12. Bussolino, F., Di Renzo, M. F., Ziche, M. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol, 1992, 119: p. 629-41.
13. Sato, T., Hakeda, Y., Yamaguchi, Y. et al. Hepatocyte growth factor is involved in formation of osteoclast-like cells mediated by clonal stromal cells (MC3T3-G2/PA6). J Cell Physiol., 1995, 164: p. 197-204.
14. Seidel, C., Borset, M., Turesson, I. et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. Blood, 1998, 91: p. 806-812.
15. Pour, L., Švachová, H., Adam, Z. et al. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann of hemat, 2010, 89: p. 385-389.
16. Minařík, J., Pika, T., Bačovský, J. et al. Prognostic value of hepatocyte growth factor, syndecan-1, and osteopontin in multiple myeloma and monoclonal gammopathy of undetermined significance. Scientc W. J., 2012, Article ID 356128, 6 pages
17. Giuliani, N., Morandi, F., Tagliaferri, S. et al. Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res, 2007, 67: p. 7665–7674.
18. Oshima, T., Abe, M., Asano, J. et al. Myeloma cells supress bone formativ by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 2005, 106: p. 3160–3165.
19. Heider, U., Kaiser, M., Mieth, M. et al. Serum concentrations of DKK-1 decrease in patiens with multiple myeloma responding to anti-myeloma treatment. Eur J. Haematol, 2009, 82: p. 31–38.
20. Haaber, J., Abildgaar, N., Knudsen, L. M. et al. Mye-loma cell expression of 10 candidate genes for osteolytic bone disease. Only everexpression of DKK-1 correlates with clinical bone involvement at diagnosis. Brit. J. Haematol, 2007, 140: p. 25–35.
21. Tian, E., Zhan, F., Walker, R. et al. The role of the Wnt-signaling antagonist DKK-1 in the development of osteolytic lesions in multiple myeloma. New Engl. J. Med., 2003, 349: p. 2483–2494.
22. Qiang, Y. W., Barlogie, B., Rudikoff, S. et al. DKK-1 induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone, 2008, 42: p. 669–680.
23. Dhodapkar, M. V., Kelly, T., Theus, A. et al. Elevated levels of shed syndecan-1 correlated with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Brit J Haematol, 1997, 99: p. 368–37.
24. Kyrtsonis, M. C., Vassilakopoulos, T. P., Siakantaris, M. P. et al. Serum syndecan-1, basic fibroblast growth factor and osteoprotegerin in multiple myeloma patients at diagnosis and during the course of the dise-ase. Eur J Haematol, 2004, 72: p. 252–258.
25. Dhodapkar, M. V., Abe, E., Theus, A. et al. Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood, 1998, 91: p. 2679-2688.
26. Seidel, C., Sundan, A., Hjorth, M. et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood, 2000, 95: p. 388-392.
27. Wijdenes, J., Vooijs, W. C., Clement, C. et al. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Brit. J. Haematol., 1996, 94: p. 318-323.
28. Witzig, T. E., Kimlinger, T., Stenson, M. et al. Syndecan-1 expression on malignant cells from the blood and marrow of patients with plasma cell proliferative disorders and b-cell chronic lymphocytic leukemia. Leukemia & Lymphoma, 1998, 51: p. 167-175.
29. Fey, M. F., Moffat, G. J., Vik, D. P. et al. Complete structure of the murine p36 (annexin II) gene. Identification of mRNAs for both the murine and the human gene with alternatively spliced 5´ noncoding exons. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1996, 1306: p. 160-170.
30. Waisman, D. M. Annexin II tetramer: structure and function. Signal Transd Mech, 1995, p. 301-322.
31. Davis, R. G., Vishwanatha, J. K. Detection of secreted and intracellular annexin II by a radioimmunoassay. J of Immun. Meth, 1995, 188: p. 91-95.
32. Kwon, M., MacLeod, T. J., Zhang, Y. et al. S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front. Biosci., 2005, 10: p. 300–325.
33. Seckinger, A. et al. Clinical and prognostic role of annexin A2 in multiple myeloma. Blood, 2012, 120.5: p. 1087-1094.
Štítky
Clinical biochemistry Nuclear medicine Nutritive therapistČlánok vyšiel v časopise
Clinical Biochemistry and Metabolism
2016 Číslo 3
Najčítanejšie v tomto čísle
- Detection of oligoclonal IgM in cerebrospinal fluid
- Vitamins in critically ill patients.
- Advances in immunoassays by luminescence and electrochemical detection
- New diagnostic criteria of multiple myeloma