Molecular Basis of Waldenström Macroglobulinemia
Authors:
S. Ševčíková; L. Novák; L. Kubiczková; E. Dementyeva; L. Říhová; R. Hájek
Authors place of work:
Babákova myelomová skupina, Ústav patologické fyziologie, LF MU Brno
Published in the journal:
Klin Onkol 2012; 25(6): 413-420
Category:
Reviews
Tato práce byla podpořena výzkumnými projekty: Ministerstva školství, mládeže a tělovýchovy MSM0021622434, G rantové agentury ČR GAP304/10/1395 a Interní grantové agentury Ministerstva zdravotnictví NT11154, NT12130 a NT13190.
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů.
Obdrženo: 29. 8. 2012
Přijato: 7. 10. 2012
Summary
Waldenström macroglobulinemia is a rare lymphoproliferative disease that is currently clasified into lymphomas with incidence of 3 cases per million. This disease comprises about 1–2% of hematological malignancies and is characterized by infiltration of malignant B cells into the bone marrow and presence of monoclonal immunoglobulin IgM in serum. WM is still an incurable disease with median survival of 5 years. Molecular basis of this disease remains unclear even though deletion of 6q, trisomy of chromosomes 4 and 8, deletion of 13q and increased expression of IL-6 seem to be typical for this disease. The most important changes of microRNA are increased expression of miR-155 and decreased expression of miR-9*. This work aims to describe current knowledge about the molecular basis of this disease.
Key words:
Waldenström macroglobulinemia – interleukin-6 – SDF-1 protein – B-LyS – PI3K/Akt – NF-κB – JAK/STAT
Zdroje
1. Waldenström JG. Incipient myelomatosis or ‘essential‘ hyperglobulinemia with fibrinogenopenia: a new syndrome? Acta Med Scand 1944; 117: 216–222.
2. Adam Z, Šmardová J, Ščudla V. Waldenströmova makroglobulinemie: klinické projevy a diferenciální diagnostika a prognóza nemoci. Vnitř Lék 2007; 53(12): 1325–1337.
3. Groves FD, Travis LB, Devesa SS et al. Waldenström’s macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer 1998; 82(6): 1078–1081.
4. Schop RF, Kuehl WM, Van Wier SA et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002; 100(8): 2996–3001.
5. Mansoor A, Medeiros LJ, Weber DM et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol 2001; 116(4): 543–549.
6. Dimopoulos M, Gika D, Zervas K et al. The international staging system for multiple myeloma is applicable in symptomatic Waldenström’s macroglobulinemia. Leuk Lymphoma 2004; 45: 1809–1813.
7. Schop RF, Jalal SM, Van Wier SA et al. Deletions of 17p13.1 and 13q14 are uncommon in Waldenström macroglobulinemia clonal cells and mostly seen at the time of disease progression. Cancer Genet Cytogenet 2002; 132(1): 55–60.
8. Braggio E, Keats JJ, Leleu X et al. High-resolution genomic analysis in Waldenström‘s macroglobulinemia identifies disease-specific and common abnormalities with marginal zone lymphomas. Clin Lymphoma Myeloma 2009; 9(1): 39–42.
9. Chang H, Samiee S, Li D et al. Analysis of IgH translocations, chromosome 13q14 and 17p13.1(p53) deletions by fluorescence in situ hybridization in Waldenström’s macroglobulinemia: a single center study of 22 cases. Leukemia 2004; 18(6): 1160–1162.
10. Chng WJ, Schop RF, Price-Troska T et al. Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood 2006; 108(8): 2755–2763.
11. Hatzimichael EC, Christou L, Bai M et al. Serum levels of IL-6 and its soluble receptor (sIL-6R) in Waldenström’s macroglobulinemia. Eur J Haematol 2001; 66(1): 1–6.
12. Chen G, Gharib TG, Huang CC et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002; 1(4): 304–313.
13. Hunter Z, Xu L, Zhou Y et al. Whole-Genome Sequencing Results From 30 Patients with Waldenström’s Macroglobulinemia. Blood 2011; 118: Abstract 434.
14. Xu L, Sohani AR, Arcaini L et al. A Somatic Variant in MYD88 (L265P) Revealed by Whole Genome Sequencing Differentiates Lymphoplasmacytic Lymphoma From Marginal Zone Lymphomas. Blood 2011; 118: Abstract 261.
15. Hatjiharissi E, Ngo H, Leontovich AA et al. Proteomic analysis of waldenström macroglobulinemia. Cancer Res 2007; 67(8): 3777–3784.
16. Turner CA Jr, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 1994; 77(2): 297–306.
17. Schebesta M, Heavey B, Busslinger M. Transcriptional control of B-cell development. Curr Opin Immunol 2002; 14(2): 216–223.
18. Calame KL. Plasma cells: finding new light at the end of B cell development. Nat Immunol 2001; 2(12): 1103–1108.
19. Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5(10): 1052–1060.
20. Wang YY, Li L, Han KJ et al. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 2004; 576(1–2): 86–90.
21. Hauer J, Püschner S, Ramakrishnan P et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci U S A 2005; 102(8): 2874–2879.
22. He JQ, Zarnegar B, Oganesyan G et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006; 203(11): 2413–2418.
23. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259–269.
24. Hunter MP, Ismail N, Zhang X et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 2008; 3(11): e3694.
25. Roccaro AM, Sacco A, Chen C et al. MicroRNA expression in the biology, prognosis and therapy of Waldenström Macroglobulinemia. Blood 2009; 113(18): 4391–4402.
26. Tam W, Dahlberg JE. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 2006; 45(2): 211–212.
27. Roccaro AM, Sacco A, Jia X et al. microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia. Blood 2010; 116(9): 1506–1514.
28. Damiano JS, Dalton WS. Integrin-mediated drug resistance in multiple myeloma. Leuk Lymphoma 2000; 38(1–2): 71–81.
29. Pagnucco G, Cardinale G, Gervasi F. Targeting multiple myeloma cells and their bone marrow microenvironment. Ann N Y Acad Sci 2004; 1028: 390–399.
30. Hideshima T, Chauhan D, Richardson P et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277(19): 16639–16647.
31. Anderson KC. Novel biologically based therapies for myeloma. Cancer J 2001; 7 (Suppl 1): S19–S23.
32. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18(16): 1926–1945.
33. Gera JF, Mellinghoff IK, Shi Y et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 2004; 279(4): 2737–2746.
34. Momand J, Zambetti GP, Olson DC et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69(7): 1237–1245.
35. El-Deiry WS, Harper JW, O’Connor PM et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Rese 1994; 54(5): 1169–1174.
36. Chellappan SP, Hiebert S, Mudryj M et al. The E2F transcription factor is a cellular target for the RB protein. Cell 1991; 65(6): 1053–1061.
37. Villunger A, Michalak EM, Coultas L et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302(5647): 1036–1038.
38. Ogawara Y, Kishishita S, Obata T et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002; 277(24): 21843–21850.
39. Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004; 18(18): 2195–2224.
40. Leitch D, Barrans SL, Jack AS et al. Dysregulation of apoptosis in Waldenström’s macroglobulinemia does not involve nuclear factor kappa B activation. Semin Oncol 2003; 30(2): 161–164.
41. Merzianu M, Jiang L, Lin P et al. Nuclear BCL-10 expression is common in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia and does not correlate with p65 NF-kappaB activation. Mod Pathol 2006; 19(7): 891–898.
42. Mitsiades N, Mitsiades CS, Poulaki V et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99(11): 4079–4086.
43. Hideshima T, Nakamura N, Chauhan D et al. Biologic sequelae of Interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001; 20(42): 5991–6000.
44. Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002; 109 (Suppl): S81–S96.
45. Senfteleben U, Cao Y, Xiao G et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 2001; 293(5534): 1495–1499.
46. Karin M, Cao Y, Greten FR et al. NF-kappa B in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2(4): 301–310.
47. Bassères DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 2006; 25(51): 6817–6830.
48. Courtois G, Gilmore TD. Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene 2006; 25(51): 6831–6843.
49. Catlett-Falcone R, Landowski TH, Oshiro MM et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1): 105–115.
50. Epling-Burnette PK, Liu JH, Catlett-Falcone R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107(3): 351–362.
51. Hodge LS, Ansell SM. Jak/Stat pathway in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011; 11(1): 112–114.
52. Yeh HH, Lai WW, Chen HH et al. Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 2006; 25(31): 4300–4309.
53. Azevedo A, Cunha V, Teixeira AL et al. IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2011; 2(12): 384–396.
54. Harir N, Pecquet C, Kerenyi M et al. Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood 2007; 109(4): 1678–1686.
55. Kotecha N, Flores NJ, Irish JM et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 2008; 14(4): 335–343.
56. Tawara K, Oxford JT, Jorcyk CL. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res 2011; 3: 177–189.
57. Poulain S, Ertault M, Leleu X et al. SDF1/CXCL12 (-801GA) polymorphism is a prognostic factor after treatment initiation in Waldenström macroglobulinemia. Leuk Res 2009; 33(9): 1204–1207.
58. Petit I, Goichberg P, Spiegel A et al. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest 2005; 115(1): 168–176.
59. Zhang XF, Wang JF, Matczak E et al. Janus kinase 2 is involved in stromal cell-derived factor-1alpha-induced tyrosine phosphorylation of focal adhesion proteins and migration of hematopoietic progenitor cells. Blood 2001; 97(11): 3342–3348.
60. Ngo HT, Azab AK, Farag M et al. Src tyrosine kinase regulates adhesion and chemotaxis in Waldenström macroglobulinemia. Clin Cancer Res 2009; 15(19): 6035–6041.
61. Ghobrial IM, Maiso P, Azab A et al. The bone marrow microenvironment in Waldenstrom macroglobulinemia. Ther Adv Hematol 2011; 2(4): 267–272.
62. Ngo HT, Leleu X, Lee J et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenström macroglobulinemia. Blood 2008; 112(1): 150–158.
63. Oyajobi BO, Franchin G, Williams PJ et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003; 102(1): 311–319.
64. Terpos E, Anagnostopoulos A, Kastritis E et al. Abnormal bone remodelling and increased levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) in Waldenström macroglobulinaemia. Br J Haematol 2006; 133(3): 301–304.
65. Rothschild BM, Ruhli F, Rothschild C. Skeletal clues apparently distinguishing Waldenström’s macroglobulinemia from multiple myeloma and leukaemia. Am J Hum Biol 2002; 14(4): 532–537.
66. Marcelli C, Chappard D, Rossi JF et al. Histologic evidence of an abnormal bone remodeling in B-cell malignancies other than multiple myeloma. Cancer 1988; 62(6): 1163–1170.
67. Tian E, Zhan F, Walker R et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349(26): 2483–2494.
68. Schneider P, MacKay F, Steiner V et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189(11): 1747–1756.
69. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104(4): 487–501.
70. Mackay F, Schneider P, Rennert P et al. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 2003; 21: 231–264.
71. Elsawa SF, Novak AJ, Grote DM et al. B-lymphocyte stimulator (BlyS) stimulates immunoglobulin production and malignant B-cell growth in Waldenström macroglobulinemia. Blood 2006; 107(7): 2882–2888.
72. Ram PT, Iyengar R. G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation. Oncogene 2001; 20(13): 1601–1606.
73. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene 2004; 23(48): 7906–7909.
74. Adamia S, Crainie M, Kriangkum J et al. Abnormal expression of hyaluronan synthases in patients with Waldenström’s macroglobulinemia. Semin Oncol 2003; 30(2): 165–168.
75. Adamia S, Treon SP, Reiman T et al. Potential impact of a single nucleotide polymorphism in the hyaluronan synthase 1 gene in Waldenström’s macroglobulinemia. Clin Lymphoma 2005; 5(4): 253–256.
76. Sahota SS, Forconi F, Ottensmeier CH et al. Origins of the malignant clone in typical Waldenström’s macroglobulinemia. Semin Oncol 2003; 30(2): 136–141.
77. Walsh SH, Laurell A, Sundström G et al. Lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia derives from an extensively hypermutated B cell that lacks ongoing somatic hypermutation. Leuk Res 2005; 29(7): 729–734.
78. Owen RG, Treon SP, Al-Katib A et al. Clinicopathological definition of Waldenström’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenström’s Macroglobulinemia. Semin Oncol 2003; 30(2): 110–115.
79. San Miguel JF, Vidriales MB, Ocio E et al. Immunophenotypic analysis of Waldenström’s macroglobulinemia. Semin Oncol 2003; 30(2): 187–195.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2012 Číslo 6
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Liver Function Assessment in Oncology Practice
- Cost Analysis of XELOX and FOLFOX-4 Chemotherapy Regimens for Colorectal Carcinoma
- Incidentally Discovered White Subcupsular Liver Nodules during Laparoscopic Surgery: Biliary Hamartoma and Peribiliary Gland Hamartoma
- A Case Report: Patient with Advanced Ovarial Tumour and Supporting Care