Function of CDK12 in Tumor Initiation and Progression and Its Clinical Consequences
Authors:
D. Vrábel 1; M. Svoboda 2,3; J. Navrátil 2; J. Kohoutek 1
Authors place of work:
Oddělení chemie a toxikologie, Výzkumný ústav veterinárního lékařství, v. v. i., Brno
1; Klinika komplexní onkologické péče, Masarykův onkologický ústav, Brno
2; Oddělení epidemiologie a genetiky nádorů, Masarykův onkologický ústav, Brno
3
Published in the journal:
Klin Onkol 2014; 27(5): 340-346
Category:
Reviews
doi:
https://doi.org/10.14735/amko2014340
Summary
Cyclin-dependent kinases (CDKs) participate in many cellular processes and play a crucial role in the regulation of cell cycle and transcription processes. Recently, CDK12 was identified as a key factor orchestrating transcription of genes, such as BRCA1, ATM, ATR, FANCI and FANCD2, which are involved in the DNA-damage response pathway. Importantly, inhibition of function of these genes commonly leads to induction of genomic instability followed by cancer development, but the precise contribution of CDK12 to these processes is to be unveiled. Nevertheless, several mutations affecting function of CDK12 were already identified in a variety of tumors of different origin (ovary, breast, prostate, intestine) making tumors sensitive to cytostatics promoting DNA damage (platin derivatives, alkylating regimens) and inhibitors of DNA repair (PARP inhibitors). Such an effect has been already observed in the model of high grade serous ovarian carcinomas. Thus, CDK12 is becoming a potential therapeutic target of drugs causing synthetic lethality in these cells. Our review summarizes most recent information about CDK12 function in cancer and discusses potential use of CDK12 in clinics.
Key words:
cyclin-dependent kinase 12 – mutation – DNA repair – PARP inhibitor – platin cytostatics
This study was supported by grant of Internal Grant Agency of the Czech Ministry of Health No. NT14599-3, development project of the MZe organization No. MZE-00027162/02:2 and institutional resources for supporting the Research Organization provided by the Czech Ministry of Health to MOÚ in 2014 No. MOÚ, 00209805.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Submitted:
15. 9. 2014
Accepted:
25. 9. 2014
Zdroje
1. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007; 7(2): 139– 147.
2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646– 674. doi: 10.1016/ j.cell.2011.02.013.
3. Swartz MA, Iida N, Roberts EW et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 2012; 72(10): 2473– 2480. doi: 10.1158/ 0008-5472.CAN-12-0122.
4. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57– 70.
5. Malumbres M, Harlow E, Hunt T et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11(11): 1275– 1276. doi: 10.1038/ ncb1109-1275.
6. Buratowski S. Progression through the RNA polymerase IICTD cycle. Mol Cell 2009; 36(4): 541– 546. doi: 10.1016/ j.molcel.2009.10.019.
7. Kohoutek J, Blazek D. Cyclin K goes with Cdk12 and Cdk13. Cell Div 2012; 7: 12. doi: 10.1186/ 1747-1028-7-12.
8. Loyer P, Trembley JH, Katona R et al. Role of CDK/ cyclin complexes in transcription and RNA splicing. Cell Signal 2005; 17(9): 1033– 1051.
9. Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009; 28(33): 2925– 2939. doi: 10.1038/ onc.2009.170.
10. Bajrami I, Frankum JR, Konde A et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/ 2 inhibitor sensitivity. Cancer Res 2014; 74(1): 287– 297. doi: 10.1158/ 0008-5472.CAN-13-2541.
11. Blazek D, Kohoutek J, Bartholomeeusen K et al. The Cyclin K/ Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 2011; 25(20): 2158– 2172.
12. Ott M, Geyer M, Zhou Q. The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 2011; 10(5): 426– 435. doi: 10.1016/ j.chom.2011.11.002.
13. Wang S, Fischer PM. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci 2008; 29(6): 302– 313. doi: 10.1016/ j.tips.2008.03.003.
14. Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 2006; 70(3): 646– 659.
15. Barboric M, Nissen RM, Kanazawa S et al. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 2001; 8(2): 327– 337.
16. Kanazawa S, Soucek L, Evan G et al. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 2003; 22(36): 5707– 5711.
17. Wittmann BM, Fujinaga K, Deng H et al. The breast cell growth inhibitor, estrogen down regulated gene 1, modulates a novel functional interaction between estrogen receptor alpha and transcriptional elongation factor cyclin T1. Oncogene 2005; 24(36): 5576– 5588.
18. Zhu R, Lu X, Pradhan M et al. A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction. Biochemistry 2014; 53(11): 1753– 1767. doi: 10.1021/ bi5000178.
19. Bartkowiak B, Liu P, Phatnani HP et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 2010; 24(20): 2303– 2316. doi: 10.1101/ gad.1968210.
20. Ko TK, Kelly E, Pines J. CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. J Cell Sci 2001; 114(14): 2591– 2603.
21. Iorns E, Martens-de Kemp SR, Lord CJ et al. CRK7 modifies the MAPK pathway and influences the response to endocrine therapy. Carcinogenesis 2009; 30(10): 1696– 1701. doi: 10.1093/ carcin/ bgp187.
22. Hertel KJ, Graveley BR. RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem Sci 2005; 30(3): 115– 118.
23. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417(1): 15– 27. doi: 10.1042/ BJ20081501.
24. Valcarcel J, Green MR. The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem Sci 1996; 21(8): 296– 301.
25. Zarrinpar A, Bhattacharyya RP, Lim WA. The structure and function of proline recognition domains. Sci STKE 2003; 2003(179): RE8.
26. Ball LJ, Kuhne R, Schneider-Mergener J et al. Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Engl 2005; 44(19): 2852– 2869.
27. Uhlen M, Oksvold P, Fagerberg L et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010; 28(12): 1248– 1250. doi: 10.1038/ nbt1210-1248.
28. Fuda NJ, Ardehali MB, Lis JT. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009; 461(7261): 186– 192. doi: 10.1038/ nature08449.
29. Sims RJ 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes De 2004; 18(20): 2437– 2468.
30. Egloff S, Murphy S. Cracking the RNA polymerase IICTD code. Trends Genet 2008; 24(6): 280– 288. doi: 10.1016/ j.tig.2008.03.008.
31. Phatnani HP, Greenleaf AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006; 20(21): 2922– 2936.
32. Kohoutek J. P-TEFb- the final frontier. Cell Div 2009; 4: 19. doi: 10.1186/ 1747-1028-4-19.
33. Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006; 23(3): 297– 305.
34. Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001; 276(34): 31793– 31799.
35. Wang Q, Young TM, Mathews MB et al. Developmental regulators containing the I-mfa domain interact with T cyclins and Tat and modulate transcription. J Mol Biol 2007; 367(3): 630– 646.
36. Blazek D. The cyclin K/ Cdk12 complex: an emerging new player in the maintenance of genome stability. Cell Cycle 2012; 11(6): 1049– 1050. doi: 10.4161/ cc.11.6.19678.
37. Bai X, Trowbridge JJ, Riley E, et al. TiF1– gamma plays an essential role in murine hematopoiesis and regulates transcriptional elongation of erythroid genes. Dev Biol 2013; 373(2): 422– 430. doi: 10.1016/ j.ydbio.2012.10.008.
38. Emanuel PD. Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia 2008; 22(7): 1335– 1342. doi: 10.1038/ leu.2008.162.
39. Fort P, Rech J, Vie A et al. Regulation of c-fos gene expression in hamster fibroblasts: initiation and elongation of transcription and mRNA degradation. Nucleic Acids Res 1987; 15(14): 5657– 5667.
40. Krumm A, Meulia T, Brunvand M et al. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev 1992; 6(11): 2201– 2213.
41. Lin C, Smith ER, Takahashi H et al. AFF4, a component of the ELL/ P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010; 37(3): 429– 437. doi: 10.1016/ j.molcel.2010.01.026.
42. Mohan M, Lin C, Guest E et al. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 2010; 10(10): 721– 728. doi: 10.1038/ nrc2915.
43. Rougvie AE, Lis JT. The RNA polymerase II molecule at the 5‘ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 1988; 54(6): 795– 804.
44. Shilatifard A, Conaway RC, Conaway JW. The RNA polymerase II elongation complex. Annu Rev Biochem 2003; 72: 693– 715.
45. Rahl PB, Lin CY, Seila AC et al. c-Myc regulates transcriptional pause release. Cell 2010; 141(3): 432– 445. doi: 10.1016/ j.cell.2010.03.030.
46. Joshi PM, Sutor SL, Huntoon CJ et al. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J Biol Chem 2014; 289(13): 9247– 9253. doi: 10.1074/ jbc.M114.551143.
47. Zang ZJ, Ong CK, Cutcutache I et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res 2011; 71(1): 29– 39. doi: 10.1158/ 0008-5472.CAN-10- 1749.
48. Nissim-Rafinia M, Kerem B. Splicing regulation as a potential genetic modifier. Trends Genet 2002; 18(3): 123– 127.
49. Ledermann J, Harter P, Gourley C et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 2014; 15(8): 852– 861. doi: 10.1016/ S1470-2045(14)70228-1.
50. Silver DP, Richardson AL, Eklund AC et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 2010; 28(7): 1145– 1153. doi: 10.1200/ JCO.2009.22.4725.
51. Svoboda M, Slabý O, Foretová L. Molekulární genetika a individualizovaný přístup v onkoloii. In: Foretová L, Svoboda M, Slabý O (eds). Molekulární genetika v onkologii. 1. vyd. Mladá fronta. In press 2014.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2014 Číslo 5
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Prognostic Markers of Advanced Non-small Cell Lung Carcinoma – Assessing the Significance of Oncomarkers Using Data-mining Techiques RPA
- Breast Cancer Patient Satisfaction with Immediate Two-stage Implant-based Breast Reconstruction
- Cereblon – a New Target of Therapy in the Treatment of Multiple Myeloma
- Function of CDK12 in Tumor Initiation and Progression and Its Clinical Consequences