History of Immunotherapy – from Coley Toxins to Checkpointsof the Immune Reaction
Authors:
B. Říhová 1*; M. Šťastný 2**
Authors place of work:
Mikrobiologický ústav AV ČR, v. v. i., Praha
1; Bristol‑ Myers Squibb spol. s r. o., Praha
2
Published in the journal:
Klin Onkol 2015; 28(Supplementum 4): 8-14
Category:
Generals
doi:
https://doi.org/10.14735/amko20154S8
Summary
Immunotherapy dates back to 1868 when German physicist Busch intentionally infected patients suffering from soft tissue sarcoma with erysipelas. Rapid tumor shrinkage was observed but response was only partial and tumor recurrence subsequently occurred. It was William B. Coley who in 1891 injected a patient with a soft tissue sarcoma with streptococcal cultures. Following a severe attack of erysipelas, the tumor underwent extensive necrosis and the patient remained diseasefree for eight years. The mixture of Streptococcus and other bacteria including Seratia marcescens, Staphylococcus and Escherichia coli was referred to as ’Coley’s toxin’ and was used for the next 45 years. This first immunotherapy was replaced at the beginning of the 20th century by more exact radiotherapy and later on by first chemotherapy with yperit. However, immunotherapy is a treatment that uses patient’s own immune system to help fight cancer and as such has several advantages over other treatments. Thus, the next major milestones in immunotherapy came in the middle of the 80s as a) adoptive cell therapy relaying on patients’ tumor infiltrating lymphocytes, b) injection of recombinant cytokines such as rIL‑2, c) identification of the first tumorassociated antigens and d) development of tumor specific monoclonal antibodies. It was followed by dendritic cells vaccines. Tremendous progress has been made in the past two decades with regard to understanding the complex interactions between tumors and the immune system and developing innovative ways to manipulate the antitumor immune response. It is recently represented as blockage of immune checkpoint inhibitors.
Key words:
BCG vaccine – adoptive cellular immunotherapy – cancer recognition
* The author declares she has no potential conflicts of interest concerning drugs, products, or services used in the study.
** I declare that, in connection with this contribution of which I am the author/coauthor, I have a conflict of interest with following company: Bristol-Myers Squibb al. s r. o.
This work was supported by grant GACZ P301/12/1254 a IGA MH CZ NT/11542-6.
Author is former employee of Institute of Microbiology of the AS CR, v. v. i., Prague.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Submitted:
4. 8. 2015
Accepted:
14. 9. 2015
Zdroje
1. Busch W. Verhandlungen ärztlicher gesellschaften. Berl Klin Wochenschr 1868; 5: 137– 138.
2. Fehleisen F. Über die Zϋchtung der Erysipelkokken auf kϋnstIichem Nährboden and ihre ϋbertragbarkeit auf den Menschen. Dtsch Med Wochenschr 1882; 8: 553– 554.
3. Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg 1891; 14(3): 199– 220.
4. Roger GH. Contribution a l’étude expérimentale du streptocoque de l’érysipèle. Rev De Med 1892; 12: 929– 956.
5. Beebe SP, Tracy M. The treatment of experimental tumors with bacterial toxins. JAMA 1907; 49: 1493– 1498.
6. Mečnikov II. Otázky imunity. Praha: Nakladatelství Československé akademie věd 1955.
7. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D. reviewed in the light of modern reearch. Cancer Res 1946; 6: 205– 216.
8. Burnet FM. Cancer – a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J 1957; 1(5023): 841– 847.
9. Dunn GP, Bruce AT, Ikeda H et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3(11): 991– 998.
10. Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette‑ Guerin in the treatment of superficial bladder tumors. J Urol 1976; 116(2): 180– 183.
11. Fritze D, Massner B, Becher R et al. Combination of chemotherapy (VAC/ FMC) with immunostimulation in metastatic breast cancer: a randomized study comparing different times and routes of administration of Corynebacterium parvum. Klin Wochenschr 1984; 62: 162– 167.
12. Rosenberg SA, Grimm EA, McGroan M et al. Biological activity of recombinant human interleukin‑2 produced in Escherichia coli. Science 1984; 223(4643): 1412– 1414.
13. Rosenberg SA, Lotze MT, Yang JC et al. Experience with the use of high‑dose interleukin‑2 in the treatment of 652 cancer patients. Ann Surg 1989; 210(4): 474– 484.
14. Rosenberg SA. Lymphokine‑activated killer cells: a new approach to immunotherapy of cancer. J Natl Cancer Inst 1985; 75(4): 595– 603.
15. Ettinghausen SE, Lipford EH 3rd, Mulé JJ et al. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine‑activated killer (LAK) cells. J Immunol 1985; 135(5): 3623– 3635.
16. Rosenberg SA, Packard BS, Aebersold PMet al. Use of tumor‑ infiltrating lymphocytes and interleukin‑2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl Med 1988; 319(25): 1676– 1680.
17. Maude SL, Frey N, Shaw PA et al. Chimeric antigen receptor T cells for sustined remissions in leukemia. N Engl J Med 2014; 371(16): 1507– 1517. doi: 10.1056/ NEJMoa1407222.
18. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495– 497.
19. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480(7378): 480– 489. doi: 10.1038/ nature10673.
20. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 211; 144(5): 646– 674. doi: 10.1016/ j.cell.2011.02.013.
21. Finn OJ. Immuno‑ oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol 2012; 23 (Suppl 8): viii6– viii9. doi: 10.1093/ annonc/ mds256.
22. Emens LA, Jaffee EM. Cancer vaccines: an old idea comes of age. Cancer Biol Ther 2003; 2 (4 Suppl 1): S161– S168.
23. Podrazil M, Bartůňková J. Imunoterapie nádorových chorob. Postgrad Med 2015; 17: 304– 309.
24. Röllig C, Schmidt C, Bornhäuser M et al. Induction of cellular immune responses in patients with stage‑ I multiple myeloma after vaccination with autologous idiotype‑ pulsed dendritic cells. J Immunother 2011; 34(1): 100– 106. doi: 10.1097/ CJI.0b013e3181facf48.
25. Obeid M, Tesniere A, Ghirnghelli F et al. Calreticulin exposure dictates immunogenicity of cancer cell death. Nat Med 2007; 13(1): 54– 61.
26. Kroemer Q, Galluzzi L, Kepp O et al. Immunogenic cell death in cancer therapy. Ann Rev Immunol 2013; 31: 51– 72. doi: 10.1146/ annurev‑ immunol‑ 032712‑ 100008.
27. Říhová B. Clinical experience with anthracycline antibiotics‑ HPMA copolymer‑ human immunoglobulin conjugates. Adv Drug Del Rev 2009; 61(13): 1149– 1158. doi: 10.1016/ j.addr.2008.12.017.
28. Říhová B, Kovář M. Immunogenicity and immunomodulatory properties of HPMA‑based polymers. Adv Drug Del Rev 2010; 62(2): 184– 191. doi: 10.1016/ j.addr.2009.10.005.
29. Vassilev L, Ranki T, Joensuu T et al. Repeated intratumoral administration of ONCOS‑ 102 leads to systemic anti-tumor CD8+ T cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. Oncoimmunology 2015; 4: 15– 21.
30. Couzin‑Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013; 342(6165): 1432– 1433. doi: 10.1126/ science.342.6165.1432.
31. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA‑ 4 blockage. Science 1996; 271(5256): 1734– 1736.
32. Hodi FS, Day SJ, McDrmott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711– 723. doi:10.1056/ NEJMoa1003466.
33. Robert C, Long CV, Brady B et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372(4): 320– 330. doi: 10.1056/ NEJMoa1412082.
34. Mockler MB, Conroy MJ, Lysaght J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front Oncol 2014; 4: 107. doi: 10.3389/ fonc.2014.00107.
35. Robert C, Schachter J, Long GV et al. KEYNOTE‑ 006 investigators: pembrolizumab versus ipilimumab in advancced melanoma. N Engl J Med 2015; 372(26): 2521– 2532. doi: 10.1056/ NEJMoa1503093.
36. Twyman‑ Saint Victor C, Rech AJ, Maity A et al. Radiation and dual checkpoint blockade activate non‑redundant immune nechamismus in cancer. Nature 2015; 520(7547): 373– 377. doi: 10.1038/ nature14292.
37. Wolchok JD, Hoos A, O’Day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune‑related response criteria. Clin Cancer Res 2009; 15(23): 7412– 7420. doi: 10.1158/ 1078‑ 0432.CCR‑ 09‑ 1624.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo Supplementum 4
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Side‑ effects of Modern Immunotherapy and How to Solve Them in the Clinics
- Immunotherapy of Urothelial Carcinoma of the Bladder – from BCG Vaccines to Targeted Therapy
- Escape Strategies of Tumors from Immune Surveillence
- The Concept of Immunogenic Cell Death in Antitumor Immunity