The Role of Regulatory T-cells in Antitumor Immune Response
Authors:
M. Klabusay
Authors place of work:
Klinika komplexní onkologické péče, Masarykův onkologický ústav, Brno, Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2015; 28(Supplementum 4): 23-27
Category:
Generals
doi:
https://doi.org/10.14735/amko20154S23
Summary
Regulatory T-lymphocytes (Treg) are essential for regulation of immune homeostasis and prevention of autoimmune disease development. Regulatory T-cells prevent the onset of autoimmune diseases; they keep immune homeostasis and modulate immune response during infection. Their activity is precisely controlled. Regulatory T-cells belong to one group of immune cells, which can support tumor survival and growth. They realize their function through inhibition of effector T-cells and by regulation of tumor microenvironment through production of various soluble factors. Many publications have proven that the amount of Treg cells is elevated in both solid tumors and in hematologic malignancies. Nevertheless, little is known about mechanisms, which allow increase and maintenance of elevated Treg cells in cancer patients. In this review, we will focus, among others, on the description of function and phenotype of Treg cells, their modulation of humoral immune response and interaction with cancer stem cells. Current development of modern tumor immunotherapy allows new possibilities of influencing Treg cells function.
Key words:
regulatory T-cells – Foxp3 – phenotype – humoral immunity – cancer stem cells
This work was supported by project VaVpI RECAMO – CZ.1.05/2.1.00/03.010.
The author declares he has no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Submitted:
2. 9. 2015
Accepted:
10. 11. 2015
Zdroje
1. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology 1971; 21(6): 903–914.
2. Chakraborty NG, Twardzik DR, Sivanandham M et al. Autologous melanoma-induced activation of regulatory T cells that suppress cytotoxic response. J Immunol 1990; 145(7): 2359–2364.
3. O’Garra A, Murphy K. Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 1994; 6(3): 458–466.
4. Sakaguchi S, Sakaguchi N, Asano M et al. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of selftolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151–1164.
5. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood 2006; 108(3): 804–811.
6. Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 2007; 7(11): 875–888.
7. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010; 127(4): 759–767. doi: 10.1002/ ijc.25429.
8. Sather BD, Treuting P, Perdue N et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J Exp Med 2007; 204(6): 1335–1347.
9. Boissonnas A, Scholer-Dahirel A, Simon-Blancal V et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumordraining lymph nodes. Immunity 2010; 32(2): 266–278. doi: 10.1016/ j.immuni.2009.11.015.
10. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057–1061.
11. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4): 330–336.
12. Roncador G, Brown PJ, Maestre L et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single cell level. Eur J Immunol 2005; 35(6): 1681–1691.
13. Nocentini G, Riccardi C. GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 2005; 35(4): 1016–1022.
14. Ronchetti S, Ricci E, Petrillo MG et al. Glucocorticoidinduced tumour necrosis factor receptorrelated protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015: 171520. doi: 10.1155/ 2015/ 171520.
15. Getnet D, Grosso JF, Goldberg MV et al. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells. Mol Immunol 2010; 47(7–8): 1595–1600. doi: 10.1016/ j.molimm.2010.02.001.
16. Gottschalk RA, Corse E, Allison JP. Expression of Helios in peripherally induced Foxp3+ regulatory T cells.J Immunol 2012; 188(3): 976–980. doi: 10.4049/ jimmunol.1102964.
17. Tatura R, Zeschnigk M, Hansen W et al. Relevance of Foxp3+ regulatory T cells for early and late phases of murine sepsis. Immunology 2015; 146(1): 144–156. doi: 10.1111/ imm.12490.
18. Wing JB, Sakaguchi S. Foxp3+ Treg cells in humoral immunity. Int Immunol 2013; 26(2): 61–69. doi: 10.1093/ intimm/ dxt060.
19. Den Haan JM, Kraal G, Bevan MJ. Cutting edge: lipopolysaccharide induces IL-10-producing regulatory CD4+T cells that suppress theCD8+ T cell response. J Immunol 2007; 178(9): 5429–5433.
20. Gregori S, Bacchetta R, Passerini L et al. Isolation, expansion, and characterization of human natural and adaptive regulatory cells. Methods Mol Biol 2007; 380: 83–105.
21. Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature1997; 389(6652): 737–742.
22. Chen Y, Kuchroo VK, Inobe J et al. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265(5176): 1237–1240.
23. Zheng SG, Gray JD, Ohtsuka K et al. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25– precursors. J Immunol 2002; 169(8): 4183–4189.
24. Jonuleit H, Schmitt E, Schuler G et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties byrepetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192(9): 1213–1222.
25. de Rezende LC, Silva IV, Rangel LB et al. Regulatory T cell as a target for cancer therapy. Arch Immunol Ther Exp 2010; 58(3): 179–190. doi: 10.1007/ s00005-010-0075-0.
26. Sakaguchi S, Yamaguchi T, Nomura T et al. Regulatory T cells and immune tolerance. Cell 2008; 133(5): 775–787. doi: 10.1016/ j.cell.2008.05.009.
27. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010; 11(1): 7–13. doi: 10.1038/ ni.1818.
28. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057–1061.
29. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4(4): 330–336.
30. Khattri R, Cox T, Yasayko SA et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4): 337–342.
31. Ohkura N, Hamaguchi M, Morikawa H et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 2012; 37(5): 785–799. doi: 10.1016/ j.immuni.2012.09.010.
32. Victora GD, Schwickert TA, Fooksman DR et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010; 143(4): 592–605. doi: 10.1016/ j.cell.2010.10.032.
33. Allen CD, Okada T, Tang HL et al. Imaging of germinal center selection events during affinity maturation. Science 2007; 315(5811): 528–531.
34. Breitfeld D, Ohl L, Kremmer E et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000; 192(11): 1545–1552.
35. Schaerli P, Willimann K, Lang AB et al. CXC chemokine receptor 5 expression defines follicular homing T cellswith B cell helper function. J Exp Med 2000; 192(11): 1553–1562.
36. Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th celldriven B cell responses. J Clin Invest 2004; 114(11): 1640–1649.
37. Lim HW, Hillsamer P, Banham AH et al. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 2005; 175(7): 4180–4183.
38. Linterman MA, Pierson W, Lee SK et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 2011; 17(8): 975–982. doi: 10.1038/ nm.2425.
39. Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol 2011; 23(6): 424–430. doi: 10.1016/ j.smim.2011.10.002.
40. Lenschow DJ, Walunas TL, Bluestone JA. CD28/ B7 system of T cell costimulation. Annu Rev Immunol 1996; 14: 233–258.
41. Qureshi OS, Zheng Y, Nakamura K et al. Transendocytosis of CD80 and CD86: a molecular basis for the cellextrinsic function of CTLA-4. Science 2011; 332(6029): 600–603. doi: 10.1126/ science.1202947.
42. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27(4): 195–201.
43. Sage PT, Francisco LM, Carman CV et al. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat Immunol 2013; 14(2): 152–161. doi: 10.1038/ ni.2496.
44. Gotot J, Gottschalk C, Leopold S et al. Regulatory T cellsuse programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc Natl Acad Sci U S A 2012; 109(26): 10468–10473. doi: 10.1073/ pnas.1201131109.
45. Chaudhry A, Samstein RM, Treuting P et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011; 34(4): 566–578. doi: 10.1016/ j.immuni.2011.03.018.
46. Nakamura K, Kitani A, Strober W. Cell contact dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194(5): 629–644.
47. Caretto D, Katzman SD, Villarino AV et al. Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. J Immunol 2010; 184(1): 30–34. doi: 10.4049/ jimmunol.0903412.
48. Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235–238.
49. Janssens W, Carlier V, Wu B et al. CD4+CD25+ T cellslyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. J Immunol 2003; 171(9): 4604–4612.
50. Yu X, Li H, Ren X. Interaction between regulatory T cells and cancer stem cells. Int J Cancer 2012; 131(7): 1491–1498. doi: 10.1002/ ijc.27634.
51. Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645–648.
52. Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells.Proc Natl Acad Sci U S A 2003; 100(7): 3983–3988.
53. Gupta PB, Fillmore CM, Jiang G et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146(4): 633–644. doi: 10.1016/ j.cell.2011.07.026.
54. Facciabene A, Peng X, Hagemann IS et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011; 475(7355): 226–230. doi: 10.1038/ nature10169.
55. Yang S, Wang B, Guan C et al. Foxp3+IL-17+ T cellspromote development of cancerinitiating cells in colorectal cancer. J Leukoc Biol 2011; 89(1): 85–91. doi: 10.1189/ jlb.0910506.
56. Woo EY, Chu CS, Goletz TJ et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61(12): 4766–4772.
57. Javia LR, Rosenberg SA. CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 2003; 26(1): 85–93.
58. Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9): 942–949.
59. Peng L, Kjaergaard J, Plautz GE et al. Tumor induced L-selectin high suppressor T cells mediate potent effector T cell blockade and cause failure of otherwise curative adoptive immunotherapy. J Immunol 2002; 169(9): 4811–4821.
60. Yu P, Lee Y, Liu W et al. Intratumor depletion of CD4 cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005; 201(5): 779–791.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2015 Číslo Supplementum 4
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Side‑ effects of Modern Immunotherapy and How to Solve Them in the Clinics
- Immunotherapy of Urothelial Carcinoma of the Bladder – from BCG Vaccines to Targeted Therapy
- Escape Strategies of Tumors from Immune Surveillence
- The Concept of Immunogenic Cell Death in Antitumor Immunity