#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

HDM2 and HDMX Proteins in Human Cancer


Authors: Hároníková Lucia;  Vojtěšek Bořivoj
Authors place of work: Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal: Klin Onkol 2018; 31(Supplementum 2): 63-70
Category: Review
doi: https://doi.org/10.14735/amko20182S63

Summary

Background:

HDM2 and HDMX proteins are key negative regulators of the tumor suppressor p53. Under normal conditions, p53 protein expression is maintained at a low level, whereas under stress conditions, this negative regulation is alleviated to increase the p53 level. HDM2 and HDMX are overexpressed in many cancer types, mainly in tumors with wild type p53, such as sarcomas. In addition to an inactivating mutation in the TP53 gene, HDM2 and HDMX overexpression represents another kind of p53 inactivation pathway.

Aim:

In this review, we first briefly describe the roles of HDM2 and HDMX proteins and then the increased occurrence of their overexpression and the possible causes of this overexpression in different human cancer types as well as therapeutic approaches targeting HDM2 and HDMX for the treatment of human cancer.

Conclusion:

HDM2 and HDMX are important therapeutic targets. The interruption of their negative effect on p53 pathway by compounds such as nutlins, leads to the reactivation of the p53 pathway. However, a deeper understanding of HDM2-HDMX-p53 structure and function will enable the identification of new therapeutic strategies that could help to provide more specific and more efficient therapies for cancer patients. Several small molecules and peptides are the subject of clinical testing in phase I, II and even III trials.

Key words:

HDM2 – HDMX – p53 signalling pathway – oncogenes – MDM2 – MDMX

This work was supported by the project MEYS – NPS I – LO1413.

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Accepted: 16. 7. 2018


Zdroje

1. Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. Annu Rev Pathol 2016; 11: 617–644. doi: 10.1146/annurev-pathol-012414-040 349.

2. Jones SN, Roe AE, Donehower LA et al. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378 (6553): 206–208. doi: 10.1038/378206a0.

3. Parant J, Chavez-Reyes A, Little NA et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet 2001; 29 (1): 92–95. doi: 10.1038/ng 714.

4. Brooks CL, Gu W. p53 regulation by ubiquitin. FEBS Lett 2011; 585 (18): 2803–2809. doi: 10.1016/j.febslet.2011.05.022.

5. Wang X. p53 regulation: teamwork between RING domains of Mdm2 and MdmX. Cell Cycle 2011; 10 (24): 4225–4229. doi: 10.4161/cc.10.24.18662.

6. Wang X, Wang J, Jiang X. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J Biol Chem 2011; 286 (27): 23725–23734. doi: 10.1074/jbc.M110.213868.

7. Chen J, Lin J, Levine AJ. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol Med 1995; 1 (2): 142–152.

8. Thut CJ, Goodrich JA, Tjian R. Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 1997; 11 (15): 1974–1986.

9. Itahana K, Mao H, Jin A et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 2007; 12 (4): 355–366. doi: 10.1016/j.ccr.2007.09.007.

10. Shvarts A, Steegenga WT, Riteco N et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 1996; 15 (19): 5349–5357.

11. Shimizu H, Burch LR, Smith AJ et al. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J Biol Chem 2002; 277 (32): 28446–28458. doi: 10.1074/jbc.M202296 200.

12. Yu GW, Rudiger S, Veprintsev D et al. The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci U S A 2006; 103 (5): 1227–1232. doi: 10.1073/pnas.0510343103.

13. Wei X, Wu S, Song T et al. Secondary interaction between MDMX and p53 core domain inhibits p53 DNA binding. Proc Natl Acad Sci U S A 2016; 113 (19): E2558–E2563. doi: 10.1073/pnas.1603838113.

14. Medina-Medina I, Martinez-Sanchez M, Hernandez-Monge J et al. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Protein Sci 2018; 27 (5): 976–986. doi: 10.1002/pro.3405.

15. Malbert-Colas L, Ponnuswamy A, Olivares-Illana V et al. HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Mol Cell 2014; 54 (3): 500–511. doi: 10.1016/j.molcel.2014.02.035.

16. Candeias MM, Malbert-Colas L, Powell DJ et al. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 2008; 10 (9): 1098–1105. doi: 10.1038/ ncb1770.

17. Gajjar M, Candeias MM, Malbert-Colas L et al. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 2012; 21 (1): 25–35. doi: 10.1016/j.ccr.2011.11.016.

18. Medina-Medina I, Garcia-Beltran P, de la Mora-de la Mora I et al. Allosteric interactions by p53 mRNA govern HDM2 E3 ubiquitin ligase specificity unde different conditions. Mol Cell Biol 2016; 36 (16): 2195–2205. doi: 10.1128/MCB.00113-16.

19. Ponnuswamy A, Hupp T, Fahraeus R. Concepts in MDM2 signaling: allosteric regulation and feedback loops. Genes Cancer 2012; 3 (3–4): 291–297. doi: 10.1177/1947601912454140.

20. Phillips A, Teunisse A, Lam S et al. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 2010; 285 (38): 29111–29127. doi: 10.1074/jbc.M110.129726.

21. Barak Y, Gottlieb E, Juven-Gershon T et al. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 1994; 8 (15): 1739–1749.

22. Zhang Y, Xiong Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ 2001; 12 (4): 175–186.

23. Ghosh M, Weghorst K, Berberich SJ. MdmX inhibits ARF mediated Mdm2 sumoylation. Cell Cycle 2005; 4 (4): 604–608.

24. Jackson MW, Lindstrom MS, Berberich SJ. MdmX binding to ARF affects Mdm2 protein stability and p53 transactivation. J Biol Chem 2001; 276 (27): 25336–25341. doi: 10.1074/jbc.M010685200.

25. Nag S, Qin J, Srivenugopal KS et al. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27 (4): 254–271. doi: 10.7555/JBR.27.20130030.

26. Ferreon JC, Lee CW, Arai M et al. Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci U S A 2009; 106 (16): 6591–6596. doi: 10.1073/pnas.0811023106.

27. Sabbatini P, McCormick F. MDMX inhibits the p300/CBP-mediated acetylation of p53. DNA Cell Biol 2002; 21 (7): 519–525. doi: 10.1089/104454902320219077.

28. Eischen CM. Role of Mdm2 and Mdmx in DNA repair. J Mol Cell Biol 2017; 9 (1): 69–73. doi: 10.1093/jmcb/mjw052.

29. Gu L, Zhu N, Zhang H et al. Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell 2009; 15 (5): 363–375. doi: 10.1016/j.ccr.2009.03.002.

30. Jung CH, Kim J, Park JK et al. Mdm2 increases cellular invasiveness by binding to and stabilizing the Slug mRNA. Cancer Lett 2013; 335 (2): 270–277. doi: 10.1016/j.canlet.2013.02.035.

31. Gu L, Zhang H, He J et al. MDM2 regulates MYCN mRNA stabilization and translation in human neuroblastoma cells. Oncogene 2012; 31 (11): 1342–1353. doi: 10.1038/onc.2011.343.

32. Zhou S, Gu L, He J et al. MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol Cell Biol 2011; 31 (24): 4928–4937. doi: 10.1128/MCB.06085-11.

33. Bottger V, Bottger A, Garcia-Echeverria C et al. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 1999; 18 (1): 189–199. doi: 10.1038/sj.onc.1202281.

34. Popowicz GM, Czarna A, Holak TA. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 2008; 7 (15): 2441–2443. doi: 10.4161/cc.6365.

35. Miller KR, Kelley K, Tuttle R et al. HdmX overexpression inhibits oncogene induced cellular senescence. Cell Cycle 2010; 9 (16): 3376–3382. doi: 10.4161/cc.9.16.12779.

36. Bista M, Petrovich M, Fersht AR. MDMX contains an autoinhibitory sequence element. Proc Natl Acad Sci U S A 2013; 110 (44): 17814–17819. doi: 10.1073/pnas.1317398110.

37. Kawai H, Wiederschain D, Yuan ZM. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 2003; 23 (14): 4939–4947.

38. Meulmeester E, Frenk R, Stad R et al. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol Cell Biol 2003; 23 (14): 4929–4938.

39. Huang Q, Chen L, Yang L et al. MDMX acidic domain inhibits p53 DNA binding in vivo and regulates tumorigenesis. Proc Natl Acad Sci U S A 2018; 115 (15): E3368–E3377. doi: 10.1073/pnas.1719090115.

40. Manfredi JJ. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 2010; 24 (15): 1580–1589. doi: 10.1101/gad.1941710.

41. Lindstrom MS, Deisenroth C, Zhang Y. Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle 2007; 6 (4): 434–437. doi: 10.4161/cc.6.4.3861.

42. Linares LK, Hengstermann A, Ciechanover A et al. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A 2003; 100 (21): 12009–12014. doi: 10.1073/pnas.2030930100.

43. Stevens C, Pettersson S, Wawrzynow B et al. ATP stimulates MDM2-mediated inhibition of the DNA-binding function of E2F1. FEBS J 2008; 275 (19): 4875–4886. doi: 10.1111/j.1742-4658.2008.06627.x.

44. Priest C, Prives C, Poyurovsky MV. Deconstructing nucleotide binding activity of the Mdm2 RING domain. Nucleic Acids Res 2010; 38 (21): 7587–7598. doi: 10.1093/nar/gkq669.

45. Liu T, Zhang H, Xiong J et al. Inhibition of MDM2 homodimerization by XIAP IRES stabilizes MDM2, influencing cancer cell survival. Mol Cancer 2015; 14: 65. doi: 10.1186/s12943-015-0334-0.

46. Jacob AG, Singh RK, Comiskey DF Jr. et al. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS One 2014; 9 (8): e104444. doi: 10.1371/journal.pone.0104444.

47. Cahilly-Snyder L, Yang-Feng T, Francke U et al. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 1987; 13 (3): 235–244.

48. Momand J, Zambetti GP, Olson DC et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69 (7): 1237–1245.

49. Oliner JD, Kinzler KW, Meltzer PS et al. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358 (6381): 80–83. doi: 10.1038/358080a0.

50. Forus A, Florenes VA, Maelandsmo GM et al. Mapping of amplification units in the q13-14 region of chromosome 12 in human sarcomas: some amplica do not include MDM2. Cell Growth Differ 1993; 4 (12): 1065–1070.

51. Ladanyi M, Cha C, Lewis R et al. MDM2 gene amplification in metastatic osteosarcoma. Cancer Res 1993; 53 (1): 16–18.

52. Leach FS, Tokino T, Meltzer P et al. p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 1993; 53 (Suppl 10): 2231–2234.

53. Miller CW, Aslo A, Won A et al. Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol 1996; 122 (9): 559–565.

54. Patterson H, Barnes D, Gill S et al. Amplification and over-expression of the MDM2 gene in human soft tissue tumours. Sarcoma 1997; 1 (1): 17–22. doi: 10.1080/13577149778434.

55. Reifenberger G, Liu L, Ichimura K et al. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 1993; 53 (12): 2736–2739.

56. Quesnel B, Preudhomme C, Fournier J et al. MDM2 gene amplification in human breast cancer. Eur J Cancer 1994; 30A (7): 982–984.

57. Marchetti A, Buttitta F, Girlando S et al. mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol 1995; 175 (1): 31–38. doi: 10.1002/path. 1711750106.

58. Marchetti A, Buttitta F, Pellegrini S et al. Mdm2 gene amplification and overexpression in non-small cell lung carcinomas with accumulation of the p53 protein in the absence of p53 gene mutations. Diagn Mol Pathol 1995; 4 (2): 93–97.

59. Riemenschneider MJ, Buschges R, Wolter M et al. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 1999; 59 (24): 6091–6096.

60. Bartel F, Schulz J, Bohnke A et al. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer 2005; 117 (3): 469–475. doi: 10.1002/ijc.21206.

61. Haupt S, Vijayakumaran R, Miranda PJ et al. The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol 2017; 9 (1): 53–61. doi: 10.1093/jmcb/mjx007.

62. Miranda PJ, Buckley D, Raghu D et al. MDM4 is a rational target for treating breast cancers with mutant p53. J Pathol 2017; 241 (5): 661–670. doi: 10.1002/path.4877.

63. Laurie NA, Donovan SL, Shih CS et al. Inactivation of the p53 pathway in retinoblastoma. Nature 2006; 444 (7115): 61–66. doi: 10.1038/nature05194.

64. Oliner JD, Saiki AY, Caenepeel S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med 2016; 6 (6): pii: a026336. doi: 10.1101/cshperspect.a026336.

65. Cerami E, Gao J, Dogrusoz U et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2 (5): 401–404. doi: 10.1158/2159-8290.CD-12-0095.

66. Bond GL, Hu W, Bond EE et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119 (5): 591–602. doi: 10.1016/j.cell.2004.11.022.

67. Hu Z, Jin G, Wang L et al. MDM2 promoter polymorphism SNP309 contributes to tumor susceptibility: evidence from 21 case-control studies. Cancer Epidemiol Biomarkers Prev 2007; 16 (12): 2717–2723. doi: 10.1158/1055-9965.EPI-07-0634.

68. Economopoulos KP, Sergentanis TN. Differential effects of MDM2 SNP309 polymorphism on breast cancer risk along with race: a meta-analysis. Breast Cancer Res Treat 2010; 120 (1): 211–216. doi: 10.1007/s10549-009-0467-1.

69. Wilkening S, Bermejo JL, Hemminki K. MDM2 SNP309 and cancer risk: a combined analysis. Carcinogenesis 2007; 28 (11): 2262–2267. doi: 10.1093/carcin/bgm 191.

70. Krekac D, Brozkova K, Knoflickova D et al. MDM2S NP309 does not associate with elevated MDM2 protein expression or breast cancer risk. Oncology 2008; 74 (1–2): 84–87. doi: 10.1159/000139135.

71. Wilkening S, Hemminki K, Rudnai P et al. No association between MDM2 SNP309 promoter polymorphism and basal cell carcinoma of the skin. Br J Dermatol 2007; 157 (2): 375–377. doi: 10.1111/j.1365-2133.2007.079 94.x

72. Knappskog S, Bjornslett M, Myklebust LM et al. The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell 2011; 19 (2): 273–282. doi: 10.1016/j.ccr.2010.12.019.

73. Ryan BM, Calhoun KM, Pine SR et al. MDM2 SNP285  does not antagonize the effect of SNP309 in lung cancer. Int J Cancer 2012; 131 (11): 2710–2716.

74. Wang P, Wang M, Li S et al. Association of the MDM2 SNP285 polymorphism with cancer susceptibility: a meta-analysis. Dis Markers 2016; 2016: 4585484. doi: 10.1155/2016/4585484.

75. Atwal GS, Kirchhoff T, Bond EE et al. Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene. Proc Natl Acad Sci U S A 2009; 106 (25): 10236–10241. doi: 10.1073/pnas.0901298106.

76. Gansmo LB, Romundstad P, Birkeland E et al. MDM4 SNP34091 (rs4245739) and its effect on breast-, colon-, lung-, and prostate cancer risk. Cancer Med 2015; 4 (12): 1901–1907. doi: 10.1002/cam4.555.

77. Gansmo LB, Bjornslett M, Halle MK et al. The MDM4 SNP34091 (rs4245739) C-allele is associated with increased risk of ovarian-but not endometrial cancer. Tumour Biol 2016; 37 (8): 10697–10702. doi: 10.1007/s13277-016-4940-2.

78. Gilkes DM, Pan Y, Coppola D et al. Regulation of MDMX expression by mitogenic signaling. Mol Cell Biol 2008; 28 (6): 1999–2010. doi: 10.1128/MCB.01633-07.

79. Ries S, Biederer C, Woods D et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 2000; 103 (2): 321–330.

80. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 2013; 13 (2): 83–96. doi: 10.1038/nrc3430.

81. Pichiorri F, Suh SS, Rocci A et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18 (4): 367–381. doi: 10.1016/j.ccr.2010.09.005.

82. Mandke P, Wyatt N, Fraser J et al. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One 2012; 7 (8): e42034. doi: 10.1371/journal.pone.0042034.

83. Concepcion CP, Han YC, Mu P et al. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 2012; 8 (7): e1002797. doi: 10.1371/journal.pgen.1002797.

84. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98 (20): 11598–11603. doi: 10.1073/pnas.181181198.

85. Lopez-Pajares V, Kim MM, Yuan ZM. Phosphorylation of MDMX mediated by Akt leads to stabilization and induces 14-3-3 binding. J Biol Chem 2008; 283 (20): 13707–13713. doi: 10.1074/jbc.M710030200.

86. Maya R, Balass M, Kim ST et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001; 15 (9): 1067–1077. doi: 10.1101/gad.886901.

87. Chen L, Gilkes DM, Pan Y et al. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 2005; 24 (19): 3411–3422. doi: 10.1038/sj.emboj.7600812.

88. Naski N, Gajjar M, Bourougaa K et al. The p53 mRNA-Mdm2 interaction. Cell Cycle 2009; 8 (1): 31–34. doi: 10.4161/cc.8.1.7326.

89. Gannon HS, Woda BA, Jones SN. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 2012; 21 (5): 668–679. doi: 10.1016/j.ccr.2012.04.011.

90. Wang YV, Leblanc M, Wade M et al. Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA-damage-activated kinases. Cancer Cell 2009; 16 (1): 33–43. doi: 10.1016/j.ccr.2009.05.008.

91. Vassilev LT, Vu BT, Graves B et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303 (5659): 844–848. doi: 10.1126/science.1092472.

92. Ray-Coquard I, Blay JY, Italiano A et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 2012; 13 (11): 1133–1140. doi: 10.1016/S1470-2045 (12) 70474-6.

93. Ding Q, Zhang Z, Liu JJ et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 2013; 56 (14): 5979–5983. doi: 10.1021/jm400487c.

94. Zanjirband M, Curtin N, Edmondson RJ et al. Combination treatment with rucaparib (Rubraca) and MDM2 inhibitors, Nutlin-3 and RG7388, has synergistic and dose reduction potential in ovarian cancer. Oncotarget 2017; 8 (41): 69779–69796. doi: 10.18632/oncotarget.19 266.

95. Zanjirband M, Edmondson RJ, Lunec J. Pre-clinical efficacy and synergistic potential of the MDM2-p53 antagonists, Nutlin-3 and RG7388, as single agents and in combined treatment with cisplatin in ovarian cancer. Oncotarget 2016; 7 (26): 40115–40134. doi: 10.18632/oncotarget.9499.

96. Reis B, Jukofsky L, Chen G et al. Acute myeloid leukemia patients‘ clinical response to idasanutlin (RG7388) is associated with pre-treatment MDM2 protein expression in leukemic blasts. Haematologica 2016; 101 (5): e185–e188. doi: 10.3324/haematol.2015.139717.

97. Burgess A, Chia KM, Haupt S et al. Clinical overview of MDM2/X-targeted therapies. Front Oncol 2016; 6: 7. doi: 10.3389/fonc.2016.00007.

98. Chang YS, Graves B, Guerlavais V et al. Stapled alphahelical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 2013; 110 (36): E3445–E3454. doi: 10.1073/pnas.1303002110.

99. Madden MM, Muppidi A, Li Z et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett 2011; 21 (5): 1472–1475. doi: 10.1016/j.bmcl.2011.01.004.

100. Huang M, Zhang H, Liu T et al. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol Cancer Ther 2013; 12 (2): 184–194. doi: 10.1158/1535-7163.MCT-12-0425.

101. Qin JJ, Wang W, Voruganti S et al. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA. Oncotarget 2015; 6 (32): 33106–33119. doi: 10.18632/oncotarget.5851.

102. Wang H, Ma X, Ren S et al. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol Cancer Ther 2011; 10 (1): 69–79. doi: 10.1158/1535-7163.MCT-10-0581.

103. Herman AG, Hayano M, Poyurovsky MV et al. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov 2011; 1 (4): 312–325. doi: 10.1158/2159-8290.CD-11-0104.

104. Pellegrino M, Mancini F, Luca R et al. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy. Cancer Res  2015; 75 (21): 4560–4572. doi: 10.1158/0008-5472.CAN-15-0439.

105. Gu L, Zhang H, Liu T et al. Discovery of dual inhibitors of MDM2 and XIAP for cancer treatment. Cancer Cell 2016; 30 (4): 623–636. doi: 10.1016/j.ccell.2016.08.015.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo Supplementum 2

2018 Číslo Supplementum 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#