The Role of HSP70 in Cancer and its Exploitation as a Therapeutic Target
Authors:
Martinková Veronika; Trčka Filip; Vojtěšek Bořivoj; Müller Petr
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2018; 31(Supplementum 2): 46-54
Category:
Review
doi:
https://doi.org/10.14735/amko20182S46
Summary
Background:
Sustained proliferation and genetic instability of cancer cells are associated with enhanced production of mutated and conformationally unstable proteins. Excessive proteosynthesis along with increased metabolic turnover generates stress conditions that cancer cells must permanently compensate for. Tumor cells thus become dependent on the maintenance of protein homeostasis, which involves protein quality control, folding, transport and stabilization. These tasks are provided by molecular chaperones, predominantly the stress proteins HSP70 and HSP90. Their expression and activity is increased in all malignant tumors, where they associate with their cochaperones to form large multiprotein complexes. HSP70 and HSP90 maintain the malignant phenotype because they facilitate the folding of numerous oncogenic proteins, maintain proliferative potential, and inhibit apoptosis. In this regard, heat-shock proteins represent an important target for cancer therapy because their inactivation results in the simultaneous blockade of multiple signaling pathways. Although several specific HSP90 inhibitors have been developed in the past decade, their antitumor activity as single agents is limited due to the induction of HSP70, which enables cell survival. Inhibitors of HSP70 thus present new possibilities for targeting proteostatic mechanisms in cancer cells.
Aim:
The aim of this article is to summarize information on the structure of HSP70 and its role in maintaining protein homeostasis in normal and cancer cells. The mechanisms of HSP70 inhibition by low-molecular weight compounds and their application in targeted antitumor therapy are also described.
Key words:
HSP70 – stress proteins – molecular chaperons – cellular stress – tumours – protein folding
This work was supported by the project MEYS – NPS I – LO1413.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Accepted: 16. 08. 2018
Zdroje
1. Daugaard M, Rohde M and Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007; 581 (19): 3702–3710. doi: 10.1016/j.febslet.2007.05.039.
2. Zylicz M and Wawrzynow A. Insights into the function of Hsp70 chaperones. IUBMB Life 2001; 51 (5): 283–287. doi: 10.1080/152165401317190770.
3. Ďurech M, Vojtěšek B and Müller P. The many roles of molecular chaperones and co-chaperones in tumor biology. Klin Onkol 2012; 25 (Suppl 2): 45–49.
4. Mayer MP and Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell Mol Life Sci 2005; 62 (6): 670–684. doi: 10.1007/s00018-004-4464-6.
5. Flaherty KM, DeLuca-Flaherty C, McKay DB. 3-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 1990; 346 (6285): 623–628. doi: 10.1038/346623a0.
6. Kityk R, Kopp J, Sinning I et al. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 2012; 48 (6): 863–874. doi: 10.1016/j.molcel.2012.09.023.
7. Aprile FA, Dhulesia A, Stengel F et al. Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One 2013; 8 (6): e67961. doi: 10.1371/journal.pone.0067961.
8. Mayer MP. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 2013; 38 (10): 507–514. doi: 10.1016/j.tibs.2013.08.001.
9. Kampinga HH and Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010; 11 (8): 579–592. doi: 10.1038/nrm2941.
10. Rüdiger S, Germeroth L, Schneider-Mergener J et al. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 1997; 16 (7): 1501–1507. doi: 10.1093/emboj/16.7.1501.
11. Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 2007; 581 (19): 3758–3769. doi: 10.1016/j.febslet.2007.05.040.
12. Shi YH, Mosser DD, Morimoto RI et al. Molecular chaperones as HSF1-specific transcriptional repressors. Gene Dev 1998; 12 (5): 654–666.
13. Zheng X, Krakowiak J, Patel N et al. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Elife 2016; 5: e18638. doi: 10.7554/eLife.18638.
14. Ferrarini M, Heltai S, Zocchi MR et al. Unusual expression and localization of heat-shock proteins in human tumor-cells. Int J Cancer 1992; 51 (4): 613–619.
15. Jaattela M. Over-expression of Hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 1995; 60 (5): 689–693.
16. Sherman MY and Gabai VL. Hsp70 in cancer: back to the future. Oncogene 2015; 34 (32): 4153–4161. doi: 10.1038/onc.2014.349.
17. Murphy ME. The HSP70 family and cancer. Carcinogenesis 2013; 34 (6): 1181–1188. doi: 10.1093/carcin/bgt111.
18. Stankiewicz AR, Lachapelle G, Foo CP et al. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 2005; 280 (46): 38729–38739. doi: 10.1074/jbc.M509497200.
19. Saleh A, Srinivasula SM, Balkir L et al. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000; 2 (8): 476–483. doi: 10.1038/35019510.
20. Guo F, Sigua C, Bali P et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 2005; 105 (3): 1246–1255. doi: 10.1182/blood-2004-05-2041.
21. Ravagnan L, Gurbuxani S, Susin SA et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001; 3 (9): 839–843. doi: 10.1038/ncb0901-839.
22. Gabai VL, Meriin AB, Mosser DD et al. Hsp70 prevents activation of stress kinases – A novel pathway of cellular thermotolerance. J Biol Chem 1997; 272 (29): 18033–18037.
23. Yaglom JA, Gabai VL and Sherman MY. High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res 2007; 67 (5): 2373–2381. doi: 10.1158/0008-5472.CAN-06-3796.
24. Gabai VL, Yaglom JA, Waldman T et al. Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Mol Cell Biol 2009; 29 (2): 559–569. doi: 10.1128/MCB.01041-08.
25. Meng L, Hunt C, Yaglom JA et al. Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 2011; 30 (25): 2836–2845. doi: 10.1038/onc.2011.5.
26. Malusecka E, Zborek A, Krzyzowska-Gruca S et al. Expression of heat shock proteins HSP70 and HSP27 in primary non-small cell lung carcinomas. An immunohistochemical study. Anticancer Res 2001; 21 (2A): 1015–1021.
27. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperon 2005; 10 (2): 86–103.
28. Hwang TS, Han HS, Choi HK et al. Differential, stagedependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. J Gastroen Hepatol 2003; 18 (6): 690–700.
29. Chuma M, Sakamoto M, Yamazaki K et al. Expression profiling in multistage hepatocarcinogenesis: Identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 2003; 37 (1): 198–207. doi: 10.1053/jhep.2003.50022.
30. Kurahashi T, Miyake H, Hara I et al. Expression of major heat shock proteins in prostate cancer: Correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. J Urology 2007; 177 (2): 757–761. doi: 10.1016/j.juro.2006.09.073.
31. Thomas X, Campos L, Mounier C et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leukemia Res 2005; 29 (9): 1049–1058. doi: 10.1016/j.leukres.2005.02.010.
32. Ray S, Lu Y, Kaufmann SH et al. Genomic mechanisms of p210 (BCR-ABL) signaling – Induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem 2004; 279 (34): 35604–35615. doi: 10.1074/jbc.M401851200.
33. Multhoff G, Botzler C, Wiesnet M et al. A stress-inducible 72-kDa heat-shock protein (Hsp72) is expresses on the surface of human tumor-cells, but not on normalcells. Int J Cancer 1995; 61 (2): 272–279.
34. Pocaly M, Lagarde V, Etienne G et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 2007; 21 (1): 93–101. doi: 10.1038/sj.leu.2404463.
35. Juhasz K, Lipp AM, Nimmervoll B et al. The complex function of Hsp70 in metastatic cancer. Cancers 2014; 6 (1): 42–66. doi: 10.3390/cancers6010042.
36. Pfister K, Radons J, Busch R et al. Patient survival by Hsp70 membrane phenotype – association with different routes of metastasis. Cancer 2007; 110 (4): 926–935. doi: 10.1002/cncr.22864.
37. Guo F, Rocha K, Bali P et al. Abrogation of heat shock protein 70 induction as a strategy, to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 2005; 65 (22): 10536–10544. doi: 10.1158/0008-5472.CAN-05-1799.
38. Grossin L, Etienne S, Gaborit N et al. Induction of heat shock protein 70 (Hsp70) by proteasome inhibitor MG 132 protects articular chondrocytes from cellular death in vitro and in vivo. Biorheology 2004; 41 (3–4): 521–534.
39. Sadekova S, Lehnert S, Chow TY. Induction of PBP74/mortalin/Grp75, a member of the hsp70 family, by low doses of ionizing radiation: a possible role in induced radioresistance. Int J Radioat Biol 1997; 72 (6): 653–660.
40. Massey AJ. ATPases as drug targets: Insights from heat shock proteins 70 and 90. J Med Chem 2010; 53 (20): 7280–7286. doi: 10.1021/jm100342z.
41. Koya K, Li Y, Wang H et al. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 1996; 56 (3): 538–543.
42. Li XK, Srinivasan SR, Connarn J et al. Analogues of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. Acs Med Chem Lett 2013; 4 (11): 1042–1047. doi: 10.1021/ml400204n.
43. Hassan AQ, Kirby CA, Zhou W et al. The Novolactone natural product disrupts the allosteric regulation of Hsp70. Chem Biol 2015; 22 (1): 87–97. doi: 10.1016/j.chembiol.2014.11.007.
44. Ermakova SP, Kang BS, Choi BY et al. (-) -epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 2006; 66 (18): 9260–9269. doi: 10.1158/0008-5472.CAN-06-1586.
45. Chang L, Miyata Y, Ung PM et al. Chemical screens against a reconstituted multiprotein complex: Myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem Biol 2011; 18 (2): 210–221. doi: 10.1016/j.chembiol.2010.12.010.
46. Williamson DS, Borgognoni J, Clay A et al. Novel adenosine-derived inhibitors of 70 kDa Heat Shock Protein, discovered through structure-based design. J Med Chem 2009; 52 (6) 1510-1513. doi: 10.1021/jm801627a.
47. Leu JI, Pimkina J, Frank A et al. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36 (1): 15–27. doi: 10.1016/j.molcel.2009.09.023.
48. Leu JIJ, Zhang P, Murphy ME et al. Structural basis for the inhibition of HSP70 and DnaK chaperones by small-molecule targeting of a C-terminal allosteric pocket. ACS Chem Biol 2014; 9 (11): 2508–2516. doi: 10.1021/cb500236y.
49. Lazarev VF, Sverchinsky DV, Mikhaylova ER et al. Sensitizing tumor cells to conventional drugs: HSP70 chaperone inhibitors, their selection and application in cancer models. Cell Death Dis 2018; 9 (2): 41–52. doi: 10.1038/s41419-017-0160-y.
50. Williams DR, Ko SK, Park S et al. An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew Chem Int Edit 2008; 47 (39): 7466–7469. doi: 10.1002/anie.200802801.
51. Rerole AL, Gobbo J, De Thonel A et al. Peptides and aptamers targeting HSP70: A novel approach for anticancer chemotherapy. Cancer Res 2011; 71 (2): 484–495. doi: 10.1158/0008-5472.CAN-10-1443.
52. Nadler SG, Tepper MA, Schacter B et al. Interaction of the immunosuppressant deosyxpergualin with member of the Hsp70 family of heat-shock proteins. Science 1992; 258 (5081): 484–486.
53. Fewell SW, Day BW and Brodsky JL. Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J Biol Chem 2001; 276 (2): 910–914. doi: 10.1074/jbc.M008535200.
54. Rousaki A, Miyata Y, Jinwal UK et al. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol 2011; 411 (3): 614–632. doi: 10.1016/j.jmb.2011.06.003.
55. Propper DJ, Braybrooke JP, Taylor DJ et al. Phase I trial of the selective mitochondrial toxin MKT 077 in chemo-resistant solid tumours. Ann Oncol 1999; 10 (8): 923–927.
56. Li XK, Colvin T, Rauch JN et al. Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther 2015; 14 (3): 642–648. doi: 10.1158/1535-7163.MCT-14-0650.
57. Massey AJ, Williamson DS, Browne H et al. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemoth Pharm 2010; 66 (3): 535–545. doi: 10.1007/s00280-009-1194-3.
58. Leu JI, Pimkina J, Pandey P et al. HSP70 Inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 2011; 9 (7): 936–947. doi: 10.1158/1541-7786.MCR-11-0019.
59. Ko SK, Kim J, Na DC et al. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. Chem Biol 2015; 22 (3): 391–403. doi: 10.1016/j.chembiol.2015.02.004.
60. Enomoto Y, Bharti A, Khaleque AA et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol 2006; 177 (9): 5946–5955.
61. Guzhova IV and Margulis BA. HSP70-based anti-cancer immunotherapy. Hum Vacc Immunother 2016; 12 (10): 2529–2535.
62. McNulty S, Colaco CA, Blandford LE et al. Heat-shock proteins as dendritic cell-targeting vaccines – getting warmer. Immunology 2013; 139 (4): 407–415. doi: 10.1111/imm.12104.
63. Zong JB, Wang C, Liu B et al. Human hsp70 and HPV16 oE7 fusion protein vaccine induces an effective antitumor efficacy. Oncol Rep 2013; 30 (1): 407–412. doi: 10.3892/or.2013.2445.
64. Xie YF, Bai O, Zhang H et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8 (+) CTL– and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J Cell Mol Med 2010; 14 (11): 2655–2666. doi: 10.1111/j.1582-4934.2009.00851.x.
65. Krause SW, Gastpar R, Andreesen R et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 2004; 10 (11): 3699–3707. doi: 10.1158/1078-0432.CCR-03-0683.
66. Trimble CL, Peng S, Kos F et al. A phase i trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 2009; 15 (1): 361–367. doi: 10.1158/1078-0432.CCR-08-1725.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2018 Číslo Supplementum 2
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Effect of DNA Methylation on the Development of Cancer
- Ferroptosis as a New Type of Cell Death and its Role in Cancer Treatment
- Possible Usage of p63 in Bioptic Diagnostics
- Current Methods of microRNA Analysis