Importance of Membrane Proteins in the Treatment of Tumor Diseases and the Possibilities of Their Further Study
Authors:
Dosedělová Lenka; Nekulová Marta; Zahradníková Martina; Faktor Jakub; Vojtěšek Bořivoj; Hernychová Lenka
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2018; 31(Supplementum 2): 32-40
Category:
Review
doi:
https://doi.org/10.14735/amko20182S32
Summary
Background:
The proteins of the cellular cytoplasmic membrane represent a heterogeneous group of proteins with different structures, localizations, and functions. They participate in many cellular processes including cellular signaling and communication with the external environment and communication between cells. Mutations and post-translational modifications alter the chemical-physical properties of membrane proteins and thus significantly affect the process of carcinogenesis. Therefore, membrane proteins represent important targets for the diagnosis and treatment of cancer. Nowadays, treatment in the form of monoclonal antibodies or low molecular weight inhibitors targets mainly receptors of growth factors on the surface of tumor cells and various types of molecules including the targets of the so-called checkpoint inhibitors on the surface of the cells of the immune system. In order to better understand the properties and functions of membrane proteins, especially with the perspective of developing new targeted approaches in therapy, mainly proteomic and molecular biological approaches are currently being used.
Aim:
The aim of this article is to describe the properties and functions of different groups of membrane proteins and to summarize their current relevance and potential for use in oncology. Attention is focused on those groups that regulate the proliferation of tumor cells, affect the immune response, cause drug resistance and metastasis, and are already used or accepted as potential targets of biological therapy. Glycosylation and phosphorylation are described in detail as the most studied post-translational modification of membrane proteins, and mass spectrometry is presented as an effective tool for the identification and quantification of membrane proteins.
Key words:
membrane proteins – glycosylation – phosphorylation – proteomic analysis – targeted therapy
This work was supported by the project MEYS – NPS I – LO1413.
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.
Accepted: 3. 8. 2018
Zdroje
1. Várady G, Cserepes J, Németh A et al. Cell surface membrane proteins as personalized biomarkers: where we stand and where we are headed. Biomark Med 2013; 7 (5): 803–819. doi: 10.2217/bmm.13.90.
2. Wu CC, Yates JR. The application of mass spectrometry to membrane proteomics. Nat Biotechnol 2003; 21 (3): 262–267. doi: 10.1038/nbt0303-262.
3. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2015; 21 (4): 687–692. doi: 10.1158/1078-0432.CCR-14-1860.
4. Leth-Larsen R, Lund RR, Ditzel HJ. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 2010; 9 (7): 1369–1382. doi: 10.1074/mcp.R900006-MCP 200.
5. Lodish H, Berk A, Zipursky SL (eds). Molecular cell biology. 4. vydání. New York: W. H. Freeman 2000.
6. Bennasroune A, Gardin A, Aunis D et al. Tyrosine kinase receptors as attractive targets of cancer therapy. Crit Rev Oncol Hematol 2004; 50 (1): 23–38. doi: 10.1016/j.critrevonc.2003.08.004.
7. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005; 5: 30. doi: 10.1186/1475-2867-5-30.
8. Fletcher JI, Haber M, Henderson MJ et al. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10 (2): 147–156. doi: 10.1038/nrc2789.
9. Clark G, Stockinger H, Balderas R et al. Nomenclature of CD molecules from the tenth human leucocyte differentiation antigen workshop. Clin Transl Immunol 2016; 5 (1): e57. doi: 10.1038/cti.2015.38.
10. Blaschuk OW, Devemy E. Cadherins as novel targets for anti-cancer therapy. Eur J Pharmacol 2009; 625 (1–3): 195–198. doi: 10.1016/j.ejphar.2009.05.033.
11. Barthel SR, Gavino JD, Descheny L et al. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 2007; 11 (11): 1473–1491. doi: 10.1517/14728222.11.11.1473.
12. Karhemo PR, Hyvönen M, Laakkonen P. Metastasis-associated cell surface oncoproteomics. Front Pharmacol 2012; 3: 192. doi: 10.3389/fphar.2012.00192.
13. Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012; 2012: 676731. doi: 10.1155/2012/676731.
14. Okegawa T, Pong RC, Li Y et al. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol 2004; 51 (2): 445 –457. doi: 035001445.
15. Huang YW, Baluna R, Vitetta ES. Adhesion molecules as targets for cancer therapy. Histol Histopathol 1997; 12 (2): 467–477.
16. Chong PK, Lee H, Kong JW et el. Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 2008; 8 (21): 4370–4382. doi: 10.1002/pmic.200800051.
17. Sefton BM. Current Protocols in Cell Biology. 1. vydání. West Sussex: John Wiley & Sons 1998.
18. Castellvi J, Garcia A, Ruiz-Marcellan C et al. Cell signaling in endometrial carcinoma: phosphorylated 4E-binding protein-1 expression in endometrial cancer correlates with aggressive tumors and prognosis. Hum Pathol 2009; 40 (10): 1418–1426. doi: 10.1016/j.humpath. 2008.
19. McArdle L, Rafferty M, Maelandsmo GM et al. Protein tyrosine phosphatase genes downregulated in melanoma. J Invest Dermatol 2001; 117 (5): 1255–1260. doi: 10.1046/j.0022-202x.2001.01534.x.
20. Pjechová M, Hernychová L, Tomašec P et al. Analysis of phosphoproteins and signalling pathways by quantitative proteomics. Klin Onkol 2014; 27 (Suppl 1): 116–120. doi: 10.14735/amko20141S116.
21. Mechref Y, Muddiman DC. Recent advances in glycomics, glycoproteomics and allied topics. Anal Bioanal Chem 2017; 409 (2): 355–357. doi: 10.1007/s00216-016-0093-9.
22. Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001; 291 (5512): 2364–2369.
23. Li H, d’Anjou M. Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 2009; 20 (6): 678–684. doi: 10.1016/j.copbio.2009.10.009.
24. Blomme B, Van Steenkiste C, Callewaert N et al. Alteration of protein glycosylation in liver diseases. J Hepatol 2009; 50 (3): 592–603. doi: 10.1016/j.jhep.2008.12.010.
25. Kim YJ, Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J 1997; 14 (5): 569–576.
26. Schultz MJ, Swindall AF, Bellis SL. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 2012; 31 (3–4): 501–518. doi: 10.1007/s10555-012-9359-7.
27. Seales EC, Jurado GA, Brunson BA et al. Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 2005; 65 (11): 4645–4652. doi: 10.1158/0008-5472.CAN-04-3117.
28. Hedlund M, Ng E, Varki A et al. alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 2008; 68 (2): 388–394. doi: 10.1158/0008-5472.CAN-07-1340.
29. Varki NM, Varki A. Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Investig 2007; 87 (9): 851–857. doi: 10.1038/labinvest.3700656.
30. Kyselova Z, Mechref Y, Kang P et al. Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 2008; 54 (7): 1166–1175. doi: 10.1373/clinchem.2007.087148.
31. Arnold JN, Saldova R, Hamid UM et al. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 2008; 8 (16): 3284–3293. doi: 10.1002/pmic.200800163.
32. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004; 4 (1): 45–60. doi: 10.1038/nrc1251.
33. Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005; 5 (7): 526–542. doi: 10.1038/nrc1649.
34. Maryáš J, Faktor J, Dvořáková M et al. Proteomics in investigation of cancer metastasis: functional and clinical consequences and methodological challenges. Proteomics 2014; 14 (4–5): 426–440. doi: 10.1002/pmic.201300264.
35. Streppel MM, Vincent A, Murkerjee R et al. Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon. Hum Pathol 2012; 43 (10): 1755–1763. doi: 10.1016/j.humpath.2012.01.005.
36. Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 2001; 47 (4): 624–630.
37. Burchell JM, Mungul A, Taylor-Papadimitriou J. O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 2001; 6 (3): 355–364.
38. Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 2007; 13 (15 Pt 2): s4652–s4654. doi: 10.1158/1078-0432.CCR-07-0213.
39. Mermelekas G, Zoidakis J. Mass spetrometry-based membrane proteomics in cancer biomarker discovery. Expert Rev Mol Diagn 2014; 14 (5): 549–563. doi: 10.1586/14737159.2014.917965.
40. Cordwell SJ, Thingholm TE. Technologies for plasma membrane proteomics. Proteomics 2010; 10 (4): 611–627. doi: 10.1002/pmic.200900521.
41. Lee YC, Block G, Chen H et al. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A. Protein Expr Purif 2008; 62 (2): 223–229. doi: 10.1016/j.pep.2008.08.003.
42. Kim Y, Elschenbroich S, Sharma P et al. Use of colloidal silica-beads for the isolation of cell-surface proteins for mass spectrometry-based proteomics. Methods Mol Biol 2011; 748: 227–241. doi: 10.1007/978-1-61779-139-0_16.
43. Miki T, Fujishima S, Komatsu K et al. LDAI-based chemical labeling of intact membrane proteins and its pulse-chase analysis under live cell conditions. Chem Biol 2014; 21 (8): 1013–1022. doi: 10.1016/j.chembiol.2014.07.013.
44. Lee SC, Knowles TJ, Postis VL et al. A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 2016; 11 (7): 1149–1162. doi: 10.1038/nprot.2016.070.
45. Hörmann K, Stukalov A, Müller AC et al. A surface biotinylation strategy for reproducible plasma membrane protein purification and tracking of genetic and drug-induced alterations. J Proteomoe Res 2016; 15 (2): 647–658. doi: 10.1021/acs.jproteome.5b01066.
46. Rybak JN, Scheurer SB, Neri D et al. Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics 2004; 4 (8): 2296–2299. doi: 10.1002/pmic.200300780.
47. Vít O, Petrák J. Integral membrane proteins in proteomics. How to break open the black box? J Proteomics 2017; 153: 8–20. doi: 10.1016/j.jprot.2016.08.006.
48. Dvořáková P, Hernychová L, Vojtěšek B. Analysis of Protein Using Mass Spectrometry. Klin Onkol 2014; 27 (Suppl 1): 104–109. doi: 10.14735/amko20141S104.
49. Hernychová L, Dvořáková P, Michalová E et al. Quantitative mass spectrometry and its utilization in oncology. Klin Onkol 2014; 27 (Suppl 1): 98–103. doi: 10.14735/amko20141S98.
50. Gao W, Xu J, Wang F et al. Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer. BMC Cancer 2015; 15: 367. doi: 10.1186/s12885-015-1343-5.
51. Schey KL, Grey AC, Nicklay JJ. Mass Spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 2013; 52 (22): 3807–3817. doi: 10.1021/bi301604j.
52. actip.org. [online]. Monoclonal Antibodies Approved by the EMA and FDA for Therapeutic Use (status 2017). Avaible from: http: //www.actip.org/products/monoclonal-antibodies-approved-by-the-ema-and-fda-for-therapeutic-use/.
53. fda.gov. [online]. USA: U. S. Food and Drug Administration. Avaible from: https: //www.fda.gov/. https: //www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ default.htm
54. ema.europa.eu. [online]. European public assessment reports. Avaible from: http: //www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d12.
55. brimr.org. [online] From the Blue Ridge Institute for Medical Research in Horse Shoe, North Carolina USA. Avaible from: http: //www.brimr.org/PKI/PKIs.htm.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2018 Číslo Supplementum 2
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- Possibilities of Using Metamizole in the Treatment of Acute Primary Headaches
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Najčítanejšie v tomto čísle
- Effect of DNA Methylation on the Development of Cancer
- Ferroptosis as a New Type of Cell Death and its Role in Cancer Treatment
- Possible Usage of p63 in Bioptic Diagnostics
- Current Methods of microRNA Analysis