Glycosylation as an Important Regulator of Antibody Function
Authors:
L. Uhrík; L. Hernychová; B. Vojtěšek
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2019; 32(Supplementum 3): 46-55
Category:
Review
doi:
https://doi.org/10.14735/amko20193S
Summary
Background: The glycosylation of constant regions of antibodies significantly affects their interaction capabilities with immune cells. It is a modification that, in addition to the biological activity of antibodies, has an impact on their conformation, stability, solubility, secretion, pharmacokinetics, and immunogenicity. The location of glycosylations on the molecule is essential for the proper function of the antibody, as is the structure of the individual glycans. Changes in the glycosylation profiles of antibodies have been described in some physiological processes like pregnancy or ageing, but also in many pathological conditions such as rheumatoid arthritis or gastric, lung and prostate tumours. There are still several unexplained mechanisms that control the glycosylation of antibodies or immune responses, which in turn are regulated by these modifications. Multiple sources describe the importance of some specific glycosylations as potential biomarkers.
Purpose: The aim of this review is to summarise and present the knowledge of the glycosylation of antibodies and to highlight their influence on immune responses and their role during disease. Their importance is also underlined by the fact that the most of these therapeutic antibodies used and developed are modified by glycosylation. The targeted introduction of appropriate glycosylations, which can promote activities such as antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis or complement-dependent cytotoxicity, have improved the ability of these antibodies to kill pathogens or tumour cells. Therefore, more attention is being paid to this area. In the future, more effective tools for diagnosing and treating certain diseases can be created with better knowledge.
Keywords:
Antibodies – glycosylation – pharmacology – immune system – therapeutics
Zdroje
10.4049/ jimmunol.1402025.
56. Takahashi N, Tetaert D, Debuire B et al. Complete amino acid sequence of the delta heavy chain of human immunoglobulin D. Proc Natl Acad Sci USA 1982; 79(9): 2850– 2854. doi: 10.1073/ pnas.79.9.2850.
57. Pucić M, Knezevic A, Vidic J et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 2011; 10(10): M111. doi: 10.1074/ mcp.M111.010090.
58. Kapur R, Kustiawan I, Vestrheim A et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 2014; 123(4): 471– 480. doi: 10.1182/ blood-2013-09-527978.
59. Menni C, Keser T, Mangino M et al. Glycosylation of immunoglobulin g: role of genetic and epigenetic influences. PLoS One 2013; 8(12): e82558. doi: 10.1371/ journal.pone.0082558.
60. Krištić J, Vučković F, Menni C et al. Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci 2014; 69(7): 779– 789. doi: 10.1093/ gerona/ glt190.
61. Ercan A, Kohrt WM, Cui J et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2017; 2(4): e89703. doi: 10.1172/ jci.insight.89703.
62. Ruhaak LR, Uh HW, Beekman M et al. Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PLoS One 2010; 5(9): e12566. doi: 10.1371/ journal.pone.0012566.
63. van de Geijn FE, Wuhrer M, Selman MH et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther 2009; 11(6): R193. doi: 10.1186/ ar2892.
64. Bondt A, Selman MH, Deelder AM et al. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J Proteome Res 2013; 12(10): 4522– 4531. doi: 10.1021/ pr400589m.
65. Novokmet M, Lukic E, Vuckovic F et al. Changes in IgG and total plasma protein glycomes in acute systemic inflammation. Sci Rep 2014; 4: 4347. doi: 10.1038/ srep04347.
66. Troelsen LN, Jacobsen S, Abrahams JL et al. IgG glycosylation changes and MBL2 polymorphisms: associations with markers of systemic inflammation and joint destruction in rheumatoid arthritis. J Rheumatol 2012; 39(3): 463– 469. doi: 10.3899/ jrheum.110584.
67. Pezer M, Stambuk J, Perica M et al. Effects of allergic diseases and age on the composition of serum IgG glycome in children. Sci Rep 2016; 6: 33198. doi: 10.1038/ srep33198.
68. de Jong SE, Selman MH, Adegnika AA et al. IgG1 Fc N-glycan galactosylation as a biomarker for immune activation. Sci Rep 2016; 6: 28207. doi: 10.1038/ srep28207.
69. Mittermayr S, Le GN, Clarke C et al. Polyclonal immunoglobulin G N-glycosylation in the pathogenesis of plasma cell disorders. J Proteome Res 2017; 16(2): 748– 762. doi: 10.1021/ acs.jproteome.6b00768.
70. Kodar K, Stadlmann J, Klaamas K, Sergeyev B, Kurtenkov O. Immunoglobulin G Fc N-glycan profiling in patients with gastric cancer by LC-ESI-MS: relation to tumor progression and survival. Glycoconj J 2012; 29(1): 57– 66. doi: 10.1007/ s10719-011-9364-z.
71. Bones J, Mittermayr S, O’Donoghue N et al. Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem 2010; 82(24): 10208– 10215. doi: 10.1021/ ac102860w.
72. Kanoh Y, Mashiko T, Danbara M et al. Analysis of the oligosaccharide chain of human serum immunoglobulin G in patients with localized or metastatic cancer. Oncology 2004; 66(5): 365– 370. doi: 10.1159/ 000079484.
73. Arnold JN, Saldova R, Galligan MC et al. Novel glycan biomarkers for the detection of lung cancer. J Proteome Res 2011; 10(4): 1755– 1764. doi: 10.1021/ pr101034t.
74. Markiewski MM, DeAngelis RA, Benencia F et al. Modulation of the antitumor immune response by complement. Nat Immunol 2008; 9(11): 1225– 1235. doi: 10.1038/ ni.1655.
75. Vuckovic F, Theodoratou E, Thaci K et al. IgG glycome in colorectal cancer. Clin Cancer Res 2016; 22(12): 3078– 3086. doi: 10.1158/ 1078-0432.CCR-15-1867.
76. Theodoratou E, Thaci K, Agakov F et al. Glycosylation of plasma IgG in colorectal cancer prognosis Sci Rep 2016; 6: 28098. doi: 10.1038/ srep28098.
77. Kanoh Y, Ohara T, Tadano T et al. Changes to N-linked oligosaccharide chains of human serum immunoglobulin G and matrix metalloproteinase-2 with cancer progression. Anticancer Res 2008; 28(2A): 715– 720.
78. Qian Y, Wang Y, Zhang X et al. Quantitative analysis of serum IgG galactosylation assists differential diagnosis of ovarian cancer. J Proteome Res 2013; 12(9): 4046– 4055. doi: 10.1021/ pr4003992.
79. Beck A, Wurch T, Bailly C et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010; 10(5): 345– 352. doi: 10.1038/ nri2747.
80. Kaplon H, Reichert JM. Antibodies to watch in 2018. MAbs 2018; 10(2): 183– 203. doi: 10.1080/ 19420862. 2018.1415671.
81. Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs 2019; 11(2): 219– 238. doi: 10.1080/ 19420862.2018. 1556465.
82. Kirchhoff CF, Wang XM, Conlon HD et al. Biosimilars: key regulatory considerations and similarity assessment tools. Biotechnol Bioeng 2017; 114(12): 2696– 2705. doi: 10.1002/ bit.26438.
83. Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005; 21(1): 11– 16. doi: 10.1021/ bp040016j.
84. Raju S. Glycosylation variations with expression systems and their impact on biological activity of therapeutic immunoglobulins. BioProcess International 2003; 1: 44– 53.
85. Yoo EM, Chintalacharuvu KR, Penichet MLet al. Myeloma expression systems. J Immunol Methods 2002; 261(1– 2): 1– 20. doi: 10.1016/ s0022-1759(01)00559-2.
86. Liu CP, Tsai TI, Cheng T et al. Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. Proc Natl Acad Sci USA 2018; 115(4): 720– 725. doi: 10.1073/ pnas.1718172115.
87. Li H, Sethuraman N, Stadheim TA et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 2006; 24(2): 210– 215. doi: 10.1038/ nbt1178.
88. Durocher Y, Butler M. Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 2009; 20(6): 700– 707. doi: 10.1016/ j.copbio.2009.10.008.
89. Ha S, Wang Y, Rustandi RR. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 2011; 3(5): 453– 460. doi: 10.4161/ mabs.3.5.16891.
90. Sehn LH, Assouline SE, Stewart DA et al. A phase 1 study of obinutuzumab induction followed by 2 years of maintenance in patients with relapsed CD20-positive B-cell malignancies. Blood 2012; 119(22): 5118– 5125. doi: 10.1182/ blood-2012-02-408773.
91. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem 1982; 51: 531– 554. doi: 10.1146/ annurev.bi.51.070182.002531.
92. Mi Y, Lin A, Fiete D et al. Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle. J Biol Chem 2014; 289(17): 12157– 12167. doi: 10.1074/ jbc.M113.544973.
93. Baenziger JU, Fiete D. Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 1980; 22(2 Pt 2): 611– 620. doi: 10.1016/ 0092-8674(80)90371-2.
94. Park EI, Manzella SM, Baenziger JU. Rapid clearance of sialylated glycoproteins by the asialoglycoprotein receptor. J Biol Chem 2003; 278(7): 4597– 4602. doi: 10.1074/ jbc.M210612200.
95. Taylor ME, Drickamer K. Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. J Biol Chem 1993; 268(1): 399– 404.
96. Zhou Q, Qiu H. The mechanistic impact of N-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J Pharm Sci 2019; 108(4): 1366– 1377. doi: 10.1016/ j.xphs.2018.11.029.
97. Liu L, Stadheim A, Hamuro L et al. Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with specific glycoforms: a comparative study with CHO produced materials. Biologicals 2011; 39(4): 205– 210. doi: 10.1016/ j.biologicals.2011.06.002.
98. Leabman MK, Meng YG, Kelley RF et al. Effects of altered FcgammaR binding on antibody pharmacokinetics in cynomolgus monkeys. MAbs 2013; 5(6): 896– 903. doi: 10.4161/ mabs.26436.
99. Endo T, Wright A, Morrison SL et al. Glycosylation of the variable region of immunoglobulin G-site specific maturation of the sugar chains. Mol Immunol 1995; 32(13): 931– 940. doi: 10.1016/ 0161-5890(95)00078-s.
100. Mimura Y, Katoh T, Saldova R et al. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell 2018; 9(1): 47– 62. doi: 10.1007/ s13238-017-0433-3.
101. Goetze AM, Liu YD, Zhang Z et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 2011; 21(7): 949– 959. doi: 10.1093/ glycob/ cwr027.
102. Malhotra R, Wormald MR, Rudd PM et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1995; 1(3): 237– 243.
103. Ju MS, Jung ST. Aglycosylated full-length IgG antibodies: steps toward next-generation immunotherapeutics. Curr Opin Biotechnol 2014; 30: 128– 139. doi: 10.1016/ j.copbio.2014.06.013.
104. Jung ST, Kang TH, Kelton W et al. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 2011; 22(6): 858– 867. doi: 10.1016/ j.copbio.2011.03.002.
105. Simmons LC, Reilly D, Klimowski L et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 2002; 263(1– 2): 133– 147. doi: 10.1016/ s0022-1759(02)00036-4.
106. Sazinsky SL, Ott RG, Silver NW et al. Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci USA 2008; 105(51): 20167– 20172. doi: 10.1073/ pnas.0809257105.
107. Jung ST, Reddy ST, Kang TH et al. Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA 2010; 107(2): 604– 609. doi: 10.1073/ pnas.0908590107.
108. Jafari R, Zolbanin NM, Rafatpanah H et al. Fc-fusion proteins in therapy: an updated view. Curr Med Chem 2017; 24(12): 1228– 1237. doi: 10.2174/ 0929867324666170113112759.
109. Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin‘s lymphoma and chronic lymphocytic leukaemia. Drugs 2003; 63(8): 803– 843. doi: 10.2165/ 00003495-200363080-00005.
110. Weiner GJ. Rituximab: mechanism of action. Semin Hematol 2010; 47(2): 115– 123. doi: 10.1053/ j.seminhematol.2010.01.011.
111. Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350(23): 2335– 2342. doi: 10.1056/ NEJMoa032691.
112. Velcheti V, Viswanathan A, Govindan R: The proportion of patients with metastatic non-small cell lung cancer potentially eligible for treatment with bevacizumab: a single institutional survey. J Thorac Oncol 2006 Jun; 1(5): 501.
113. von Minckwitz G, Eidtmann H, Rezai M et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 2012; 366(4): 299– 309. doi: 10.1056/ NEJMoa1111065.
114. Gibiansky L, Sutjandra L, Doshi S et al. Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacokinet 2012; 51(4): 247– 260. doi: 10.2165/ 11598090-000000000-00000.
115. de Weers M, Tai YT, van der Veer MS et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011; 186(3): 1840– 1848. doi: 10.4049/ jimmunol.1003032.
116. Jonker DJ, O’Callaghan CJ, Karapetis CS et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007; 357(20): 2040– 2048. doi: 10.1056/ NEJMoa071834.
117. Bonner JA, Harari PM, Giralt J et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354(6): 567– 578. doi: 10.1056/ NEJMoa053422.
118. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res 2014; 16(2): 209. doi: 10.1186/ bcr3621.
119. Verma S, Miles D, Gianni L et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783– 1791. doi: 10.1056/ NEJMoa1209124.
120. Boyerinas B, Jochems C, Fantini M et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 2015; 3(10): 1148– 1157. doi: 10.1158/ 2326-6066.CIR-15-0059.
121. Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64(7): 2343– 2346.
122. Swain SM, Baselga J, Kim SB et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 2015; 372(8): 724– 734. doi: 10.1056/ NEJMoa1413513.
123. Dienstmann R, Tabernero J. Necitumumab, a fully human IgG1 mAb directed against the EGFR for the potential treatment of cancer. Curr Opin Investig Drugs 2010; 11(12): 1434– 1441.
124. Garnock-Jones KP. Necitumumab: first global approval. Drugs 2016; 76(2): 283– 289. doi: 10.1007/ s40265-015-0537-0.
125. Ribas A, Hamid O, Daud A et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 2016; 315(15): 1600– 1609. doi: 10.1001/ jama.2016.4059.
126. Borcoman E, Le Tourneau C. Pembrolizumab in cervical cancer: latest evidence and clinical usefulness. Ther Adv Med Oncol 2017; 9(6): 431– 439. doi: 10.1177/ 1758834017708742.
127. Gandhi L, Rodriguez-Abreu D, Gadgeel S et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018; 378(22): 2078– 2092. doi: 10.1056/ NEJMoa1801005.
128. Markham A, Duggan S. Cemiplimab: first global approval. Drugs 2018; 78(17): 1841– 1846. doi: 10.1007/ s40265-018-1012-5.
129. Migden MR, Rischin D, Schmults CD et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 2018; 379(4): 341– 351. doi: 10.1056/ NEJMoa1805131.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2019 Číslo Supplementum 3
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Protein Ubiquitination Research in Oncology
- CRISPR-Cas9 as a Tool in Cancer Therapy
- Glycosylation as an Important Regulator of Antibody Function
- Uncommon EGFR Mutations in Non-Small Cell Lung Cancer and Their Impact on the Treatment