#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Glycoproteins in the Sera of Oncological Patients


Authors: L. Hernychová;  L. Uhrík;  R. Nenutil;  M. V. Novotný
Authors place of work: Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal: Klin Onkol 2019; 32(Supplementum 3): 39-45
Category: Review
doi: https://doi.org/10.14735/amko20193S

Summary

Background: Glycosylation is a posttranslational modification that is involved in many biological processes and significantly affects the processes associated with tumour progression. Changes in glycan structures on the surface of tumour cells caused by altering levels of glycosyltransferase and glycosidase expression affect proliferation, adhesion, migration and cellular signalling. The presence of aberrant glycan structures and glycoconjugates in the sera of oncological patients has been reported in many cancers. Consequently, many glycoproteins have been approved by the U.S. Food and Drug Administration as tumour biomarkers for clinical investigations. At present, attention is focused on the search for new glycomarkers that are decorated by aberrant glycosylation or are overexpressed in the serum or exosomes due to their active secretion or release from tumour cells to the extracellular space.

Purpose: The aim of this article has been to review the structure of glycans, glycoproteins and other glycoconjugates and to give more details about their functions in the development and progression of tumours. Another aim was to familiarise the reader with selected clinically approved glycoproteins used to diagnose oncological diseases (AFP, PSA, CA 125, HE4). Attention was paid to changes in the glycan structure of these proteins, their function, serum concentrations and clinical use in the diagnostics of cancer.

Keywords:

tumour – glycoproteins – serum – biomarkers


Zdroje

ST et al. Comprehensive analytical approach toward glycomic characterization and profil­­ing in urinary exosomes. Anal Chem 2017; 89(10): 5364– 5372. doi: 10.1021/ acs.analchem.7b00062.

10. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015; 15(9): 540– 555. doi: 10.1038/ nrc3982.

11. Kailemia MJ, Park D, Lebril­la CB. Glycans and glycoproteins as specific bio­markers for cancer. Anal Bioanal Chem 2017; 409(2): 395– 410. doi: 10.1007/ s00216-016-9880-6.

12. Ashkani J, Naidoo KJ. Glycosyltransferase gene expres­sion profiles clas­sify cancer types and propose prognostic subtypes. Sci Rep 2016; 20(6): 26451. doi: 10.1038/ srep26451.

13. Zhang L, Yu D. Exosomes in cancer development, metastasis, and im­munity. Biochim Biophys Acta Rev Cancer 2019; 1871(2): 455– 468. doi: 10.1016/ j.bbcan.2019.04.004.

14. Li I, Nabet BY. Exosomes in the tumor microenvironment as mediators of cancer ther­apy resistance. Mol Cancer 2019; 18(1): 32. doi: 10.1186/ s12943-019-0975-5.

15. Wu H, Chen X, Ji J et al. Progress of exosomes in the dia­gnosis and treatment of pancreatic cancer. Genet Test Mol Biomarkers 2019; 23(3): 215– 222. doi: 10.1089/ gtmb.2018.0235.

16. Zhang W, Ou X, Wu X. Proteomics profil­­ing of plasma exosomes in epithelial ovarian cancer: a potential role in the coagulation cascade, dia­gnosis and prognosis. Int J Oncol 2019; 54(5): 1719– 1733. doi: 10.3892/ ijo.2019.4742.

17. Dube DH, Bertozzi CR. Glycans in cancer and inflam­mation –  potential for therapeutics and dia­g­nostics. Nat Rev Drug Discov 2005; 4(6): 477– 488. doi: 10.1038/ nrd1751.

18. Mann BF, Goetz JA, House MG et al. Glycomic and proteomic profil­­ing of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N-linked glycans of overexpres­sed glycoproteins. Mol Cell Proteomics 2012; 11(7): M111.015792. doi: 10.1074/ mcp.M111.015792.

19. Lu J, Gu J. Significance of β-galactoside α2,6 sialyltranferase 1 in cancers. Molecules 2015; 20(5): 7509– 7527. doi: 10.3390/ molecules20057509.

20. Cum­mings RD, Trowbridge IS, Kornfeld S. A mouse lymphoma cell line resistant to the leukoagglutinat­­ing lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-Dman­noside beta 1,6 N-acetylglucosaminyltransferase. J Biol Chem 1982; 257(22): 13421−13427.

21. Zhao Y, Sato Y, Isaji T et al. Branched N-glycans regulate the bio­logical functions of integrins and cadherins. FEBS J 2008; 275(9): 1939−1948. doi: 10.1111/ j.1742-4658.2008.06346.x.

22. Demetriou M, Nabi IR, Coppolino M et al. Reduced contact-inhibition and substratum adhesion in epithelial cel­ls expres­s­­ing GlcNAc-transferase V. J Cell Biol 1995; 130(2): 383−392. doi: 10.1083/ jcb.130.2.383.

23. Yamamoto H, Swoger J, Greene S et al. Beta1,6-Nacetylglucosamine-bear­­ing N-glycans in human gliomas: implications for a role in regulat­­ing invasivity. Cancer Res 2000; 60(1): 134−142.

24. Yamamoto H, Oviedo A, Sweeley C et al. Alpha2,6-sialylation of cel­l-surface N-glycans inhibits glioma formation in vivo. Cancer Res 2001; 61(18): 6822−6829.

25. Ito Y, Miyauchi A, Yoshida H et al. Expres­sion of alpha1,6-fucosyltransferase (FUT8) in papil­lary carcinoma of the thyroid: its linkage to bio­logical aggres­siveness and anaplastic transformation. Cancer Lett 2003; 200(2): 167−172. doi: 10.1016/ s0304-3835(03)00383-5.

26. Shinkawa T, Nakamura K, Yamane N et al. The absence of fucose but not the presence of galactose or bisect­­ing N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhanc­­ing antibody-dependent cel­lular cytotoxicity. J Biol Chem 2003; 278(5): 3466−3473. doi: 10.1074/ jbc.M210665200.

27. Valík D, Nekulová M, Zdražilová Dubská L et al. Doporučení k využití nádorových markerů v klinické praxi. Klin Biochem Metab 2014; 22(43): 22– 39.

28. Bergstrand CG and Czar B. Demonstration of a new protein fraction in serum from the human fetus. Scand J Clin Lab Invest 1956; 8(2): 174. doi: 10.3109/ 00365515609049266.

29. Kirwan A, Utratna M, O’Dwyer ME, et al. Glycosylation-based serum bio­markers for cancer dia­gnostics and prognostics. Biomed Res Int 2015; 2015: 490531. doi: 10.1155/ 2015/ 490531.

30. Saito S, Ojima H, Ichikawa H et al. Molecular back­ground of α-fetoprotein in liver cancer cel­ls as revealed by global RNA expres­sion analysis. Cancer Science 2008; 99(12): 2402– 2409. doi: 10.1111/ j.1349-7006.2008.00973.x.

31. Johnson PJ, Poon TCW, Hjelm NM et al. Structures of dis­ease-specific serum alpha-fetoprotein isoforms. Br J Cancer 2000; 83(10): 1330– 1337. doi: 10.1054/ bjoc.2000.1441.

32. Kobayashi M, Kuroiwa T, Suda T et al. Fucosylated fraction of alpha-fetoprotein, L3, as a useful prognostic factor in patients with hepatocel­lular carcinoma with special reference to low concentrations of serum alpha-fetoprotein. Hepatol Res 2007; 37(11): 914– 922. doi: 10.1111/ j.1872-034X.2007.00147.x.

33. Pešl M, Zámečník L, Soukup V et al. Prostatický specifický antigen a odvozené parametry. In: Urologie pro praxi 2004. [online]. Dostupné z: https:/ / www.urologiepropraxi.cz/ pdfs/ uro/ 2004/ 02/ 05.pdf.

34. Isono T, Tanaka T, Kageyama S et al. Structural diversity of cancer-related and non-cancer-related prostatespecific antigen. Clin Chem 2002; 48(12): 2187– 2194.

35. Kyselova Z, Mechref Y, Al Bataineh MM et al. Alterations in the serum glycome due to metastatic prostate cancer. J Prot Res 2007; 6(5): 1822– 1832. doi: 10.1021/ pr060664t.

36. Peracaula R, Bar­rabés S, Sar­rats A et al. Altered glycosylation in tumours focused to cancer dia­gnosis. Dis Markers 2008; 25(4– 5): 207– 218. doi: 10.1155/ 2008/ 797629.

37. Leymarie N, Grif­fin PJ, Jonscher K et al. Interlaboratory study on dif­ferential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics 2013; 12(10): 2935– 2951. doi: 10.1074/ mcp.M113.030643.

38. Bast RC Jr, Feeney M, Lazarus H et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest 1981; 68(5): 1331– 1337. doi: 10.1172/ jci110380.

39. O’Brien TJ, Beard JB, Underwood LJ et al. The CA 125 gene: an extracel­lular superstructure dominated by repeat sequences. Tumour Biol 2001; 22(6): 348– 366. doi: 10.1159/ 000050638.

40. Yin BW, Lloyd KO. Molecular clon­­ing of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem 2001; 276(29): 27371– 27375. doi: 10.1074/ jbc.M103554200.

41. Rump A, Morikawa Y, Tanaka M et al. Bind­­ing of ovarian cancer antigen CA125/ MUC16 to mesothelin mediates cell adhesion. J Biol Chem 2004; 279(10): 9190– 9198. doi: 10.1074/ jbc.M312372200.

42. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. An­nu Rev Physiol 2007; 70: 431– 457. doi: 10.1146/ an­nurev.physiol.70.113006.100659.

43. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progres­sion and targeted ther­apy. Anticancer Agents Med Chem 2013; 13(2): 276– 280.

44. Drapkin R, von Horsten HH, Lin Y et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpres­sed by serous and endometrioid ovarian carcinomas. Cancer Res 2005; 65(6): 2162– 2169. doi: 10.1158/ 0008-5472.CAN-04-3924.

45. Moore RG, Brown AK, Mil­ler MC et al. Utility of a novel serum tumour bio­marker HE4 in patients with endometrioid adenocarcinoma of the uterus. Gynecol Oncol 2008; 110(2): 196– 201. doi: 10.1016/ j.ygyno.2008.04.002.

46. Escudero JM, Auge JM, Filel­la X et al. The utility of serum human epididymis protein 4 (HE4) in patients with malignant and nonmalignant dis­eases: comparison with CA125. Clin Chem 2011; 57(11): 1534– 1544. doi: 10.1373/ clinchem.2010.157073.

47. Moore RG, McMeekin DS, Brown AK et al. A novel multiple marker bio­as­say utiliz­­ing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mas­s.Gynecol Oncol 2009; 112(1): 40– 46. doi: 10.1016/ j.ygyno.2008.08.031.

48. O’Con­nor BF, Monaghan D, Cawley J et al. Lectin af­finity chromatography (LAC). Methods Mol Biol 2017; 1485: 411– 420. doi: 10.1007/ 978-1-4939-6412-3_23.

49. Wu J, Xie X, Nie S et al. Altered expres­sion of sialylated glycoproteins in ovarian cancer sera us­­ing lectin-based ELISA as­say and quantitative glycoproteomics analysis. J Proteome Res 2013; 12(7): 3342−3352. doi: 10.1021/ pr400169n.

50. Ito H, Hoshi K, Honda T et al. Lectin-based as­say for glycoform-specific detection of α2,6-sialylated transfer­rin and carcinoembryonic antigen in tis­sue and body fluid. Molecules 2018; 23(6): 1314. doi: 10.3390/ molecules23061314.

51. Hayashi M, Matsuo K, Tanabe K et al. Comprehensive serum glycopeptide spectra analysis (CSGSA): a potential new tool for early detection of ovarian cancer. Cancers (Basel) 2019; 11(5): 591. doi: 10.3390/ cancers11050591.

52. Qiu F, Chen F, Liu D et al. LC-MS/ MS-based screen­­ing of new protein bio­markers for cervical precancerous lesions and cervical cancer Nan Fang Yi Ke Da Xue Xue Bao 2019; 39(1): 13– 22. doi: 10.12122/ j.is­sn.1673-4254.2019.01.03.

53. Gaunitz S, Nagy G, Pohl NL et al. Recent advances in the analysis of complex glycoproteins. Anal Chem 2017; 89(1): 389– 413. doi: 10.1021/ acs.analchem.6b04343.

54. Reily C, Stewart TJ, Renfrow MB et al. Glycosylation in health and dis­ease. Nat Rev Nephrol 2019; 15(6): 346– 366. doi: 10.1038/ s41581-019-0129-4.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo Supplementum 3

2019 Číslo Supplementum 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#