Overview of Current Findings about the Role of Oestrogen Receptor α in Cancer Cell Signalling Pathways
Authors:
P. Voňka; R. Hrstka
Authors place of work:
Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno
Published in the journal:
Klin Onkol 2019; 32(Supplementum 3): 34-38
Category:
Review
doi:
https://doi.org/10.14735/amko20193S
Summary
Background: Oestrogen receptor α is a key biomarker for breast cancer, and the presence or absence of oestrogen receptor α in breast cancer influences the treatment regimens and patients’ prognosis. Oestrogen receptors α are activated after ligand binding, then translocate into the nucleus and activate the transcription of specific genes. This process is called the genomic effect of oestrogen receptor α. Oestrogen receptor α also has nongenomic effects that are exerted mainly in cytoplasm. Due to the important involvement of oestrogen receptor α in cell signalling, these receptors represent a key target for anticancer therapy.
Purpose: Although oestrogen receptor α was discovered 60 years ago, the corresponding signalling pathways have not yet been fully described due to their complexity. With respect to the considerable extent of oestrogen receptor α signalling, covering all related information is beyond the scope of this review, which is focused mainly on recently discovered aspects of oestrogen receptor α function.
Keywords:
signal transduction – oestrogen receptors
Zdroje
1. Feng Y, Spezia M, Huang S et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5(2): 77– 106. doi: 10.1016/ j.gendis.2018.05.001.
2. Hardeland R. Mitochondrial hormone receptors – an emerging field of signaling in the cell’s powerhouse. Biomed J Sci Tech Res 2017; 1(6): 1678– 1681. doi: 10.26717/ BJSTR.2017.01.000511.
3. Wakeling AE. Similarities and distinctions in the mode of action of different classes of antioestrogens. Endocr Relat Cancer 2000; 7(1): 17– 28.
4. Girgert R, Emons G, Grundker C. Estrogen signaling in ERα-negative breast cancer: ERβ and GPER. Front Endocrinol (Lausanne) 2018; 9: 781. doi: 10.3389/ fendo.2018.00781.
5. Safe S, Kim K. Non-classical genomic estrogen receptor (ER)/ specificity protein and ER/ activating protein-1 signaling pathways. J Mol Endocrinol 2008; 41(5): 263– 275. doi: 10.1677/ JME-08-0103.
6. Shaulian E. AP-1 – the Jun proteins: oncogenes or tumor suppressors in disguise? Cell Signal 2010; 22(6): 894– 899. doi: 10.1016/ j.cellsig.2009.12.008.
7. He H, Sinha I, Fan R et al. c-Jun/ AP-1 overexpression reprograms ERα signaling related to tamoxifen response in ERα-positive breast cancer. Oncogene 2018; 37(19): 2586– 2600. doi: 10.1038/ s41388-018-0165-8.
8. Hrstka R, Brychtova V, Fabian P et al. AGR2 predicts tamoxifen resistance in postmenopausal breast cancer patients. Dis Markers 2013; 35(4): 207– 212. doi: 10.1155/ 2013/ 761537.
9. Wright TM, Wardell SE, Jasper JS et al. Delineation of a FOXA1/ ERα/ AGR2 regulatory loop that is dysregulated in endocrine therapy-resistant breast cancer. Mol Cancer Res 2014; 12(12): 1829– 1839. doi: 10.1158/ 1541-7786.MCR-14-0195.
10. Yasar P, Ayaz G, User SD et al. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 2017; 16(1): 4– 20. doi: 10.1002/ rmb2.12006.
11. Thomas C, Gustafsson JA. The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 2011; 11(8): 597– 608. doi: 10.1038/ nrc3093.
12. Zhou W, Slingerland JM. Links between oestrogen receptor activation and proteolysis: relevance to hormone-regulated cancer therapy. Nat Rev Cancer 2014; 14(1): 26– 38.
13. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 2009; 9(9): 631– 643. doi: 10.1038/ nrc2713.
14. Lin SL, Yan LY, Liang XW et al. A novel variant of ER-α, ER-α36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hec1A cells. Reprod Biol Endocrinol 2009; 7: 102. doi: 10.1186/ 1477-7827-7-102.
15. Tong JS, Zhang QH, Wang ZB et al. ER-α36, a novel variant of ER-α, mediates estrogen-stimulated proliferation of endometrial carcinoma cells via the PKCdelta/ ERK pathway. PLoS One 2010; 5(11): e15408. doi: 10.1371/ journal.pone.0015408.
16. Zhang X, Ding L, Kang L et al. Estrogen receptor-α 36 mediates mitogenic antiestrogen signaling in ER-negative breast cancer cells. PLoS One 2012; 7(1): e30174. doi: 10.1371/ journal.pone.0030174.
17. Kang L, Zhang X, Xie Y et al. Involvement of estrogen receptor variant ER-α36, not GPR30, in nongenomic estrogen signaling. Mol Endocrinol 2010; 24(4): 709– 721. doi: 10.1210/ me.2009-0317.
18. Zhang XT, Ding L, Kang LG et al. Involvement of ER-α36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells. Oncol Rep 2012; 27(6): 2057– 2065. doi: 10.3892/ or.2012.1722.
19. Zhang XT, Kang LG, Ding L et al. A positive feedback loop of ER- α36/ EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene 2011; 30(7): 770– 780. doi: 10.1038/ onc.2010.458.
20. Acconcia F, Kumar R. Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett 2006; 238(1): 1– 14. doi: 10.1016/ j.canlet.2005.06.018.
21. Chaudhri RA, Olivares-Navarrete R, Cuenca N et al. Membrane estrogen signaling enhances tumorigenesis and metastatic potential of breast cancer cells via estrogen receptor-α36 (ERα36). J Biol Chem 2012; 287(10): 7169– 7181. doi: 10.1074/ jbc.M111.292946.
22. Kang L, Wang ZY. Breast cancer cell growth inhibition by phenethyl isothiocyanate is associated with down-regulation of oestrogen receptor-α36. J Cell Mol Med 2010; 14(6B): 1485– 1493. doi: 10.1111/ j.1582-4934.2009.00877.x.
23. Shi L, Dong B, Li Z et al. Expression of ERα36, a novel variant of estrogen receptor α, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol 2009; 27(21): 3423– 3429. doi: 10.1200/ JCO.2008.17.2254.
24. Zhang X, Wang ZY. Estrogen receptor- α variant, ER-α36, is involved in tamoxifen resistance and estrogen hypersensitivity. Endocrinology 2013; 154(6): 1990– 1998. doi: 10.1210/ en.2013-1116.
25. Wang Q, Jiang J, Ying G et al. Tamoxifen enhances stemness and promotes metastasis of ERα36(+) breast cancer by upregulating ALDH1A1 in cancer cells. Cell Res 2018; 28(3): 336– 358. doi: 10.1038/ cr.2018.15.
26. Chen JQ, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/ estrogen receptors and potential physiological/ pathophysiological implications. Biochim Biophys Acta 2005; 1746(1): 1– 17. doi: 10.1016/ j.bbamcr.2005.08.001.
27. Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97(4): 673– 683. doi: 10.1002/ jcb.20743.
28. Lone MU, Baghel KS, Kanchan RK et al. Physical interaction of estrogen receptor with MnSOD: implication in mitochondrial O2(.-) upregulation and mTORC2 potentiation in estrogen-responsive breast cancer cells. Oncogene 2017; 36(13): 1829– 1839. doi: 10.1038/ onc.2016.346.
29. Moreira PI, Custodio J, Moreno A et al. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 2006; 281(15): 10143– 10152. doi: 10.1074/ jbc.M510249200.
30. Theodossiou TA, Yannakopoulou K, Aggelidou C et al. Tamoxifen subcellular localization; observation of cell-specific cytotoxicity enhancement by inhibition of mitochondrial ETC complexes I and III. Photochem Photobiol 2012; 88(4): 1016– 1022. doi: 10.1111/ j.1751-1097.2012.01144.x.
31. Theodossiou TA, Walchli S, Olsen CE et al. Deciphering the nongenomic, mitochondrial toxicity of tamoxifens as determined by cell metabolism and redox activity. ACS Chem Biol 2016; 11(1): 251– 262. doi: 10.1021/ acschembio.5b00734.
32. Theodossiou TA, Ali M, Grigalavicius M et al. Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT-tamoxifen hybrid therapy. NPJ Breast Cancer 2019; 5: 13. doi: 10.1038/ s41523-019-0108-8.
33. Rohlenova K, Sachaphibulkij K, Stursa J et al. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer. Antioxid Redox Signal 2017; 26(2): 84– 103. doi: 10.1089/ ars.2016.6677.
34. Mumcuoglu M, Bagislar S, Yuzugullu H et al. The ability to generate senescent progeny as a mechanism underlying breast cancer cell heterogeneity. PLoS One 2010; 5(6): e11288. doi: 10.1371/ journal.pone.0011288.
35. Hubackova S, Davidova E, Rohlenova K et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ 2019; 26(2): 276– 290. doi: 10.1038/ s41418-018-0118-3.
Štítky
Paediatric clinical oncology Surgery Clinical oncologyČlánok vyšiel v časopise
Clinical Oncology
2019 Číslo Supplementum 3
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
- Obstacle Called Vasospasm: Which Solution Is Most Effective in Microsurgery and How to Pharmacologically Assist It?
Najčítanejšie v tomto čísle
- Protein Ubiquitination Research in Oncology
- CRISPR-Cas9 as a Tool in Cancer Therapy
- Glycosylation as an Important Regulator of Antibody Function
- Uncommon EGFR Mutations in Non-Small Cell Lung Cancer and Their Impact on the Treatment