#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Uncommon EGFR Mutations in Non-Small Cell Lung Cancer and Their Impact on the Treatment


Authors: O. Bílek 1,2;  M. Holánek 1;  J. Berkovcová 3;  O. Horký 3;  T. Kazda 4;  H. Čoupková 1;  S. Špelda 1;  L. Kristková 1;  M. Zvaríková 1;  J. Podhorec 1,2;  S. Bořilová 1;  L. Bohovicová 1;  L. Zdražilová Dubská 1,2
Authors place of work: Klinika komplexní onkologické péče, LF MU a Masarykův onkologický ústav, Brno 1;  Regionální centrum aplikované molekulární onkologie, Masarykův onkologický ústav, Brno 2;  Oddělení onkologické patologie, Masarykův onkologický ústav, Brno 3;  Klinika radiační onkologie, LF MU a Masarykův onkologický ústav, Brno 4
Published in the journal: Klin Onkol 2019; 32(Supplementum 3): 6-12
Category: Review
doi: https://doi.org/10.14735/amko20193S6

Summary

Background: Epidermal growth factor receptor (EGFR) mutations play an important role in the pathogenesis of non-small cell lung cancer. Because these alterations are so-called targetable mutations, their identification is important in daily clinical practice. The diagnostic standard of EGFR mutations is currently based on polymerase chain reaction methods, particularly the quantitative real-time polymerase chain reaction. In recent years, new generation sequencing has become increasingly important. In patients with EGFR mutations, a significant improvement in therapeutic outcomes was achieved with the administration of targeted therapy using tyrosine kinase inhibitors. EGFR is composed of four domains: extracellular with a ligand binding site, a transmembrane domain, a cytoplasmic tyrosine kinase catalytic domain, and a C-terminal domain. The key structures of the tyrosine kinase domain responsible for signal activation and transmission are encoded within exons 18–21 on chromosome 7. EGFR mutations are highly heterogeneous. About 90% of EGFR mutations are deletions of exon 19 and point mutation L858R in exon 21. These are referred to as ‘classic’ mutations. Approximately 10% of the total number of EGFR mutations is attributable to less frequent alterations in the EGFR gene. Due to the low incidence of non-small cell lung cancer with less frequent EGFR mutations, information on their predictive significance is still incomplete. Most of the data for the treatment of cases with uncommon mutations were gathered from retrospective analyses and evaluations of small cohorts.

Purpose: The aim of this review is to summarise the current options for diagnosing and treating non-small cell lung cancer patients with uncommon EGFR mutations.

This work was supported by the MEYS – NPS I – LO1413 and MH CR – DRO (MMCI, 00209805).

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 2. 6. 2019

Accepted: 26. 8. 2019

Keywords:

Non-small cell lung cancer – epidermal growth factor receptor – Tyrosine kinase inhibitors – molecular targeted therapy – EGFR mutations


Zdroje

1. Dušek L, Mužík J, Kubásek M et al. Epidemiologie zhoubných nádorů v České republice. [online]. Dostupné z: http:/ / www.svod.cz.

2. Molina JR, Yang P, Cassivi SD et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83(5): 584–594. doi: 10.4065/ 83.5.584.

3. Rosas G, Ruiz R, Araujo JM et al. ALK rearrangements: bio­logy, detection and opportunities of therapy in non-small cell lung cancer. Crit Rev Oncol Hematol 2019; 136: 48–55. doi: 10.1016/ j.critrevonc.2019.02.006.

4. Shaw AT, Riely GJ, Bang YJ et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol 2019; 131. doi: 10.1093/ annonc/ mdz131.

5. Planchard D, Smit EF, Groen HJ et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol 2017; 18(10): 1307–1316. doi: 10.1016/ S1470-2045(17)30679-4.

6. Wang W, Wang H, Lu P et al. Crizotinib with or without an EGFR-TKI in treating EGFR-mutant NSCLC patients with acquired MET amplification after failure of EGFR-TKI ther­apy: a multicenter retrospective study. J Transl Med 2019; 17(1): 52. doi: 10.1186/ s12967-019-1803-9.

7. Bronte G, Ulivi P, Verlicchi A et al. Targeting RET-rearranged non-small-cell lung cancer: future prospects. Lung Cancer (Auckl) 2019; 10: 27–36. doi: 10.2147/ LCTT.S192830.

8. Bílek O, Bohovicová L, Demlová R et al. Non-small cell lung cancer – from immunobio­logy to immunotherapy. Klin Onkol 2016; 29 (Suppl 4): 78–87. doi: 10.14735/ amko20164S78.

9. Fukuoka M, Yano S, Giaccone G et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 2003; 21(12): 2237–2246. doi: 10.1200/ JCO.2003.10.038.

10. Kris MG, Natale RB, Herbst RS et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290(16): 2149–2158. doi: 10.1001/ jama.290.16.2149.

11. Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21): 2129–2139. doi: 10.1056/ NEJMoa040938.

12. Paez JG, Jänne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304(5676): 1497–1500. doi: 10.1126/ science.1099314.

13. Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361(10): 947–957. doi: 10.1056/ NEJMoa0810699.

14. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13(3): 239–246. doi: 10.1016/ S1470-2045(11)70393-X.

15. Fiala O, Pešek M, Fínek J et al. EGFR mutations in patients with advanced NSCLC. Klin Onkol 2012; 25(4): 267–273. doi: 10.14735/ amko2012267.

16. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 2007; 98(12): 1817–1824. doi: 10.1111/ j.1349-7006.2007.00607.x.

17. Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361(10): 947–957. doi: 10.1056/ NEJMoa0810699.

18. Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362(25): 2380–2388. doi: 10.1056/ NEJMoa0909530.

19. Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010; 11(2): 121–128. doi: 10.1016/ S1470-2045(09)70364-X.

20. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13(3): 239–246. doi: 10.1016/ S1470-2045(11)70393-X.

21. Zhou C, Wu YL, Chen G et al. Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol 2015; 26(9): 1877–1883. doi: 10.1093/ annonc/ mdv276.

22. Wu YL, Zhou C, Liam CK et al. First-line erlotinib versus gemcitabine/ cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol 2015; 26(9): 1883–1889. doi: 10.1093/ annonc/ mdv270.

23. Wu YL, Zhou C, Hu CP et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol 2014; 15(2): 213–222. doi: 10.1016/ S1470-2045(13)70604-1.

24. Sequist LV, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31(27): 3327–3334. doi: 10.1200/ JCO.2012.44.2806.

25. Yang JC, Wu YL, Schuler M et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 2015; 16(2): 141–151. doi: 10.1016/ S1470-2045(14)71173-8.

26. Mok TS, Wu YL, Ahn MJ et al. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med 2017; 376(7): 629–640. doi: 10.1056/ NEJMoa1612674.

27. Soria JC, Ohe Y, Vansteenkiste J et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2018; 378(2): 113–125. doi: 10.1056/ NEJMoa1713137.

28. Oxnard GR, Hu Y, Mileham KF et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol 2018; 4(11): 1527–1534. doi: 10.1001/ jamaoncol.2018.2969.

29. Li XY, Wu JZ, Cao HX et al. Blockade of DNA methylation enhances the therapeutic effect of gefitinib in non-small cell lung cancer cells. Oncol Rep 2013; 29(5): 1975–1982. doi: 10.3892/ or.2013.2298.

30. Wells A. EGF receptor. Int J Biochem Cell Biol 1999; 31(6): 637–643. doi: 10.1016/ S1357-2725(99)00015-1.

31. Kumar A, Petri ET, Halmos B et al. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol 2008; 26(10): 1742–1751. doi: 10.1200/ JCO.2007.12.1178.

32. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006; 12(18): 5268–5272. doi: 10.1158/ 1078-0432.CCR-05-1554.

33. Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 2006; 118(2): 257–262. doi: 10.1002/ ijc.21496.

34. Hata A, Yoshioka H, Fujita S et al. Complex mutations in the epidermal growth factor receptor gene in non-small cell lung cancer. J Thorac Oncol 2010; 5(10): 1524–1528. doi: 10.1097/ JTO.0b013e3181e8b3c5.

35. Gallant JN, Sheehan JH, Shaver TM et al. EGFR kinase domain duplication (EGFR-KDD) is a novel oncogenic driver in lung cancer that is clinically responsive to afatinib. Cancer Discov 2015; 5(11): 1155–1163. doi: 10.1158/ 2159-8290.CD-15-0654.

36. Konduri K, Gallant JN, Chae YK et al. EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discov 2016; 6(6): 601–611. doi: 10.1158/ 2159-8290.CD-16-0075.

37. Eck MJ, Yun CH. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim Biophys Acta 2010; 1804(3): 559–566. doi: 10.1016/ j.bbapap.2009.12.010.

38. Riely GJ, Politi KA, Miller VA et al. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006; 12(24): 7232–7241. doi: 10.1158/ 1078-0432.CCR-06-0658.

39. Li D, Ambrogio L, Shimamura T et al. BIBW2992, an irreversible EGFR/ HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008; 27(34): 4702–4711. doi: 10.1038/ onc.2008.109.

40. Yu HA, Arcila ME, Hellmann MD et al. Poor response to erlotinib in patients with tumors containing baseline EGFR T790M mutations found by routine clinical molecular testing. Ann Oncol 2014; 25(2): 423–428. doi: 10.1093/ annonc/ mdt573.

41. Miller VA, Hirsh V, Cadranel J et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/ 3 randomised trial. Lancet Oncol 2012; 13(5): 528–538. doi: 10.1016/ S1470-2045(12)70087-6.

42. Jänne PA, Yang JC, Kim DW et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015; 372(18): 1689–1699. doi: 10.1056/ NEJMoa1411817.

43. Romero D. Poziotinib for uncommon ERBB mutations. Nat Rev Clin Oncol 2018; 15(7): 404. doi: 10.1038/ s41571-018-0038-7.

44. Sheikine Y, Rangachari D, McDonald DC et al. EGFR testing in advanced non-small-cell lung cancer, a mini-review. Clin Lung Cancer 2016; 17(6): 483–492. doi: 10.1016/ j.cllc.2016.05.016.

45. Warth A, Penzel R, Brandt R et al. Optimized algorithm for Sanger sequencing-based EGFR mutation analyses in NSCLC bio­psies. Virchows Arch 2012; 460(4): 407–414. doi: 10.1007/ s00428-012-1219-x.

46. Ragazzi M, Tamagnini I, Bisagni A et al. Diamond: immunohistochemistry versus sequencing in EGFR analysis of lung adenocarcinomas. J Clin Pathol 2016; 69(5): 440–447. doi: 10.1136/ jclinpath-2015-203348.

47. Sorber L, Zwaenepoel K, Deschoolmeester V et al. Circulating cell-free nucleic acids and platelets as a liquid bio­psy in the provision of personalized therapy for lung cancer patients. Lung Cancer 2017; 107: 100–107. doi: 10.1016/ j.lungcan.2016.04.026.

48. Zhu G, Ye X, Dong Z et al. Highly sensitive droplet digital PCR method for detection of EGFR-activating mutations in plasma cell-free DNA from patients with advanced non-small cell lung cancer. J Mol Dia­gn 2015; 17(3): 265–272. doi: 10.1016/ j.jmoldx.2015.01.004.

49. Luthra R, Chen H, Roy-Chowdhuri S et al. Next-generation sequencing in clinical molecular dia­gnostics of cancer: advantages and challenges. Cancers (Basel) 2015; 7(4): 2023–2036. doi: 10.3390/ cancers7040874.

50. Lanman RB, Mortimer SA, Zill OA et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One 2015; 10(10): e0140712. doi: 10.1371/ journal.pone.0140712.

51. O’Kane GM, Bradbury PA, Feld R et al. Uncommon EGFR mutations in advanced non-small cell lung cancer. Lung Cancer 2017; 109: 137–144. doi: 10.1016/ j.lung­can.2017.04.016.

52. Beau-Faller M, Prim N, Ruppert AM et al. Rare EGFR exon 18 and exon 20 mutations in non-small-cell lung cancer on 10 117 patients: a multicentre observational study by the French ERMETIC-IFCT network. Ann Oncol 2014; 25(1): 126–131. doi: 10.1093/ annonc/ mdt418.

53. Yasuda H, Park E, Yun CH et al. Structural, bio­chemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med 2013; 5(216): 216ra177. doi: 10.1126/ scitranslmed.3007205.

54. Chen D, Song Z, Cheng G. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations. Onco Targets Ther 2016; 9: 4181–4186. doi: 10.2147/ OTT.S108242.

55. Yang JC, Sequist LV, Geater SL et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 2015; 16(7): 830–838. doi: 10.1016/ S1470-2045(15)00026-1.

56. Naidoo J, Sima CS, Rodriguez K et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib. Cancer 2015; 121(18): 3212–3220. doi: 10.1002/ cncr.29493.

57. Klughammer B, Brugger W, Cappuzzo F et al. Examining treatment outcomes with erlotinib in patients with advanced non-small cell lung cancer whose tumors harbor uncommon EGFR mutations. J Thorac Oncol 2016; 11(4): 545–555. doi: 10.1016/ j.jtho.2015.12.107.

58. van Veggel B, van der Wekken A, Hashemi S et al. Osimertinib treatment for patients with EGFR exon 20 insertion positive non-small cell lung cancer. Ann Oncol 2018; 29 (Suppl 8): 493–547. doi: 10.1093/ annonc/ mdy292.

59. Piotrowska Z, Costa DB, Oxnard GR et al. Activity of the Hsp90 inhibitor luminespib among non-small-cell lung cancers harboring EGFR exon 20 insertions. Ann Oncol 2018; 29(10): 2092–2097. doi: 10.1093/ annonc/ mdy336.

60. Chen D, Song Z, Cheng G. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations. Onco Targets Ther 2016; 9: 4181–4186. doi: 10.2147/ OTT.S108242.

61. Chang MH, Ahn HK, Lee J et al. Clinical impact of amphiregulin expression in patients with epidermal growth factor receptor (EGFR) wild-type nonsmall cell lung cancer treated with EGFR-tyrosine kinase inhibitors. Cancer 2011; 117(1): 143–151. doi: 10.1002/ cncr.25560.

62. Ahn MJ, Cho JH, Sun JM et al. An open-label, multicenter, phase II single arm trial of osimertinib in non-small cell lung cancer patients with uncommon EGFR mutation (KCSG-LU15-09). J Clin Oncol 2018; 36 (Suppl 15): 9050–9050. doi: 10.1200/ JCO.2018.36.15_suppl.9050.

63. Chou TY, Chiu CH, Li LH et al. Mutation in the tyrosine kinase domain of epidermal growth factor receptor is a predictive and prognostic factor for gefitinib treatment in patients with non-small cell lung cancer. Clin Cancer Res 2005; 11(10): 3750–3757. doi: 10.1158/ 1078-0432.CCR-04-1981.

64. Wu JY, Yu CJ, Chang YC et al. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non-small cell lung cancer. Clin Cancer Res 2011; 17(11): 3812–3821. doi: 10.1158/ 1078-0432.CCR-10-3408.

65. Čoupková H, Vyzula R. Afatinib in the treatment of advanced non-small cell lung cancer with rare EGFR (in exon 18-T179X) mutation – a case report. Klin Onkol 2018; 31(5): 380–383. doi: 10.14735/ amko2018380.

66. Chiu CH, Yang CT, Shih JY et al. Epidermal growth factor receptor tyrosine kinase inhibitor treatment response in advanced lung adenocarcinomas with G719X/ L861Q/ S768I mutations. J Thorac Oncol 2015; 10(5): 793–799. doi: 10.1097/ JTO.0000000000000504.

67. Wu JY, Shih JY. Effectiveness of tyrosine kinase inhibitors on uncommon E709X epidermal growth factor receptor mutations in non-small-cell lung cancer. Onco Targets Ther 2016; 9: 6137–6145. doi: 10.2147/ OTT.S118071.

68. Heigener DF, Schumann C, Sebastian M et al. Afatinib in non-small cell lung cancer harboring uncommon EGFR mutations pretreated with reversible EGFR inhibitors. Oncologist 2015; 20(10): 1167–1174. doi: 10.1634/ theoncologist.2015-0073.

69. Kobayashi S, Canepa HM, Bailey AS et al. Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2013; 8(1): 45–51. doi: 10.1097/ JTO.0b013e3182781e35.

70. Peng L, Song ZG, Jiao SC. Efficacy analysis of tyrosine kinase inhibitors on rare non-small cell lung cancer patients harboring complex EGFR mutations. Sci Rep 2014; 4: 6104. doi: 10.1038/ srep06104.

71. Baek JH, Sun JM, Min YJ et al. Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small cell lung cancer except both exon 19 deletion and exon 21 L858R: a retrospective analysis in Korea. Lung Cancer 2015; 87(2): 148–154. doi: 10.1016/ j.lungcan.2014.11.013.

72. Čapková L, Kalinová M, Tichá I et al. Detekce EGFR mutací v cirkulující nádorové DNA (ctDNA) v plazmě – mezilaboratorní porovnání referenčních laboratoří v České republice. Klin Onkol 2018; 31(5): 353–360. doi: 10.14735/ amko2018392353.

73. Svatoň M, Pešek M, Baxa J et al. Pacientka se třemi EGFR mutacemi – postupný rozvoj rezistence na předchozí cílenou léčbu. Klin Onkol 2018; 31(1): 53–58. doi: 10.14735/ amko201853.

Štítky
Paediatric clinical oncology Surgery Clinical oncology

Článok vyšiel v časopise

Clinical Oncology

Číslo Supplementum 3

2019 Číslo Supplementum 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#