Invasive Methods in the Treatment of Advanced Parkinson’s Disease
Authors:
K. Gmitterová 1; M. Minár 1; Z. Košutzká 1; P. Valkovič 1,2
Authors place of work:
II. Neurologická klinika LF UK a UN Bratislava
1; Inštitút normálnej a patologickej fyziológie, Slovenská akadémia vied, Bratislava
2
Published in the journal:
Cesk Slov Neurol N 2017; 80/113(5): 503-516
Category:
Minimonography
doi:
https://doi.org/10.14735/amcsnn2017503
Summary
Advanced stages of Parkinson‘s disease are accompanied by a broad scale of motor and non-motor complications which negatively impact patients’ quality of life. The therapeutic influence of these complications resulting from the neurodegenerative nature of the underlying disease and are additionally caused by long-term use of dopaminergic treatment, represents a serious clinical problem. Recently, the therapeutic strategy has been focused on continuous dopaminergic stimulation to achieve the balanced control of symptoms. With disease progression and drug-induced complications conventional pharmacological procedures often fail to control clinical symptoms. Alternative methods rise to the forefront of therapeutic interest as they play an important role in the treatment of advanced Parkinson‘s disease. These options include: deep brain stimulation, subcutaneous application of apomorphine and levodopa/carbidopa intestinal gel therapy. Correct patient selection, consideration of specific non-motor symptoms and potential risks accompanying individual treatment modalities, significantly contribute to the selection of most appropriate procedure.
Key words:
Parkinson’s disease – motor complications of advanced Parkinson’s disease – non-motor complications – continuous dopaminergic stimulation – levodopa/carbidopa intestinal gel – apomorphine – deep brain stimulation – DBS
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Zdroje
1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008;79(4):368– 76. doi: 10.1136/ jnnp.2007.131045.
2. Kurčová S, Menšíková K, Kaiserová M, et al. Premotorické a non-motorické príznaky Parkinsonovej choroby – taxonómia, klinická manifestácia a neuropatologické koreláty. Cesk Slov Neurol N 2016;79/ 112(3):255– 70. doi: 10.14735/ amcsnn2016255.
3. Lee A, Gilbert RM. Epidemiology of Parkinson’s disease. Neurol Clin 2016;34(4):955– 65. doi: 10.1016/ j.ncl.2016.06.012.
4. Cotzias GC, Van Woert MH, Schiffer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276(7):374– 9. doi: 10.1056/ NEJM196702162760703.
5. Hauser RA. Levodopa: past, present and future. Eur Neurol 2009;62(1):1– 8. doi: 10.1159/ 000215875.
6. Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord 2004;19(9):997– 1005. doi: 10.1002/ mds.20243.
7. LeWitt PA. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov Disord 2015;30(1):64– 72. doi: 10.1002/ mds.26082.
8. Cibulcik F, Benetin J, Kurca E, et al. Effects of rasagiline on freezing of gait in Parkinson’s disease - an open-label, multicenter study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016;160(4):549– 552. doi: 10.5507/ bp.2016.023.
9. Kaňovský P, Farníková K. Farmakoterapie pokročilé Parkinsonovy nemoci ve světle doporučených postupů. Neurol Prax 2010;11(4):241– 5.
10. Růzicka E, Streitová H, Jech R, et al. Amantadine infusion in treatment of motor fluctuations and dyskinesias in Parkinson’s disease. J Neural Transm (Vienna) 2000; 07(11): 1297– 306.
11. Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctu-ation in Parkinson’s disease: frequent and disabling. Neurology 2002;59(3):408– 13.
12. Storch A, Schneider CB, Wolz M, et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 2013;80(9):800– 9. doi: 10.1212/ WNL.0b013e318285c0ed.
13. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the culumative literature. Mov Disord 2001;16(3):448– 58.
14. Weintraub D, David AS, Evans AH, et al. Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov Disord 2015;30(2):121– 7. doi: 10.1002/ mds. 26016.
15. Grandas FJ, Galiano ML, Tabernero C. Risk factors for levodopa-induced dyskinesias in Parkinson’s disease. J Neurol 1999;246(12):1127– 33.
16. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 2006;5(8):677– 87.
17. Nutt JG, Woodward WR, Beckner RM, et al. Effect of peripheral catechol-O-methyltransferase inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients. Neurology 1994;44(5):913– 9.
18. Hardoff R, Sula M, Tamir A, et al. Gastric emtying time and gastric motility in patients with Parkinson’s disease. Mov Disord 2001;16(6):1041– 7.
19. Miller DW, Abercrombie ED. Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 1999;72(4):1516– 22.
20. Bibbiani F, Constantini LC, Patel R, et al. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 2005;192(1):73– 8.
21. Fox HC, Katzenschlager R, Lim SY, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2011;26(Suppl 3):S2– 41. doi: 10.1002/ mds.23829.
22. Kahan J, Mancini L, Urner M, et al. Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson’s disease. PLoS one 2012;7(12):e50270. doi: 10.1371/ journal.pone.0050270.
23. Benabid AL, Pollak P, Louveau A, et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987;50(1– 6):344– 6.
24. Tasker RR. Ablative therapy for movement disorders. Does thalamotomy alter the course of Parkinson’s disease? Neurosurg Clin N Am 1998;9(2):375– 80.
25. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006;355(9):896– 908.
26. Deuschl G, Agid Y. Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: balancing the risks and benefits. Lancet Neurol 2013;12(10):1025– 34. doi: 10.1016/ S1474-4422(13)70151-0.
27. Okun MS, Gallo BV, Mandybur G, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomized controlled trial. Lancet Neurol 2012;11(2):140– 9. doi: 10.1016/ S1474-4422(11)70308-8.
28. Williams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomized, open-label trial. Lancet Neurol 2010;9(6):581– 91. doi: 10.1016/ S1474-4422(10)70093-4.
29. Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368(7):610– 22. doi: 10.1056/ NEJMoa1205158.
30. Xie CL, Shao B, Chen J, et al. Effects of neurostimulation for advanced Parkinson’s disease patiens on motor symptoms: A multiple-treatments metaanalysas of randomized controlled trials. Sci Rep 2016;6:25285. doi: 10.1038/ srep25285.
31. Krahulik D, Nevrly M, Otruba P, et al. Deep Brain Stimulation in Olomouc-Techniques, Electrode Locations, and Outcomes. Cesk Slov Neurol N 2014;77/ 110(1):54– 8.
32. Rothlind JC, York MK, Carlson K, et al. Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparison of treatment at pallidal and subthalamic targets versus best medical therapy. J Neurol Neurosurg Psychiatry 2015;86(6):622– 9. doi: 10.1136/ jnnp-2014-308119.
33. Anderson VC, Burchiel KJ, Hogarth P, et al. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005;62(4):554– 60.
34. Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010;362(22):2077– 91. doi: 10.1056/ NEJMoa0907083.
35. Combs HL, Folley BS, Berry DT, et al. Cognition and Depression Following Deep Brain Stimulation of the Subthalamic Nucleus and Globus Pallidus Pars Internus in Parkinson’s Disease: A Meta-Analysis. Neuropsychol Rev 2015;25(4):439– 54. doi: 10.1007/ s11065-015-9302-0.
36. Odekerken VJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013;12(1):37– 44. doi: 10.1016/ S1474-4422(12)70264-8.
37. Martinez-Ramirez D, Hu W, Bona AR, et al. Update on deep brain stimulation in Parkinson’s disease. Transl Neurodegener 2015;4:12. doi: 10.1186/ s40035-015-0034-0.
38. Jung YJ, Kim HJ, Jeon BS, et al. An 8-Year Follow-upon the Effect of Subthalamic Nucleus Deep BrainStimulation on Pain in Parkinson Disease. JAMA Neurol. 2015;72(5):504– 10. doi: 10.1001/ jamaneurol.2015.8.
39. Volkmann J, Albanese A, Antonini A, et al. Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review. J Neurol 2013;260(11):2701– 14. doi: 10.1007/ s00415-012-6798-6.
40. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse Control Disorders in Parkinson’s Disease: Management, Controversies, and Potential Approaches. Mov Disord 2015;30(2):150– 9. doi: 10.1002/ mds.26099.
41. Merola A, Romagnolo A, Rizzi L, et al. Impulse control behaviors and subthalamic deep brain stimulation in Parkinson’s disease. J Neurol 2017;264(1):40– 48. doi: 10.1007/ s00415-016-8314-x.
42. Metmann LV, O’Leary ST. Role of surgery in the treatment of motor complications. Mov Disord 2005;20(S11):S45– 56.
43. Baláž M, Bočková M, Bareš M, et al. Kvalita života po hluboké mozkové stimulaci u pacientů s pokročilou Parkinsonovou nemocí. Cesk Slov Neurol 2011;74(5): 564– 8.
44. Xu F, Ma W, Huanf Y, et al. Deep brain stimulation of pallidal versus subthalamic for patients with Parkinson’s disease: a meta-analysis of controlled clinical trials. Neuropsychiatr Dis Treat 2016; 12:1435– 1444. doi: 10.2147/ NDT.S105513.
45. St George RJ, Carlson – Kuhta P, Nutt JG, et al. The effect of deep brain stimulation randomized by site on balance in Parkinson’s disease. Mov Disord 2014;29(7):949– 53. doi: 10.1002/ mds.25831.
46. St George RJ, Nutt JG, Burchiel KJ, et al. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology 2010;75(14):1292– 9. doi: 10.1212/ WNL.0b013e3181f61329.
47. Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 2005;16(17):1883– 7.
48. Thevathasan W, Cole MH, Graepel CL, et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 2012;135(Pt 5):1446– 54. doi: 10.1093/ brain/ aws039.
49. Chieng LO, Madahavan K, Wang MY. Deep brain stimulation as a treatment for Parkinson’s disease related to camptocormia. J Clin Neurosci 2015;22(10):1555– 61. doi: 10.1016/ j.jocn.2015.05.018.
50. Weiss D, Walach M, Meisner C, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 2013;136 (Pt 7):2098– 108. doi: 10.1093/ brain/ awt122.
51. Gooneratne IK, Green AL, Dugan P, et al. Comparing neurostimulation technologies in refractory focal-onset epilepsy. J Neurol Neurosurg Psychiatry 2016;87(11):1174– 82. doi: 10.1136/ jnnp-2016-313297.
52. Boccard SG, Pereira EA, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci 2015;22(10):1537– 43. doi: 10.1016/ j.jocn.2015.04.005.
53. Schrock LE, Mink JW, Woods DW, et al. Tourette syndrome deep brain stimulation: a rewiew and updated recommendations. Mov Disord 2015;30(4):448– 71. doi: 10.1002/ mds.26094.
54. Accolla EA, Aust S, Merkl A, et al. Deep brain stimulation of the posterior gyrus rectus region for treatment resistant depression. J Affect Disord 2016;194:33– 7. doi: 10.1016/ j.jad.2016.01.022.
55. Vedam-Mai V, Gardner B, Okun MS, et al. Increased precursor cell proliferation after deep brain stimulation for Parkinson’s disease: a human study. PLoS One 2014;9(3):e88770. doi: 10.1371/ journal.pone.0088770.
56. Spieles-Engemann AL, Behbehani MM, Collier TJ, et al. Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss. Neurobiol Dis 2010;39(1):105– 15. doi: 10.1016/ j.nbd.2010.03.009.
57. Wallace BA, Ashkan K, Heise CE, et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 2007;130:2129– 2145.
58. Odin P, Ray-Chaudhury K, Slevin JT, et al. Collective physician perspectives on non-oral medication approaches for the management of clinically relevant unresolved issues in Parkinson’s disease: consensus from an international survey and discussion program. Parkinsonism Relat Disord 2015;21(10):1133– 44. doi: 10.1016/ j.parkreldis.2015.07.020.
59. Charles D, Konrad PE, Neimat JS, et al. Subthalamic nucleus beep brain stimulation in early stage Parkinson’s disease. Parkinsonism Relat Disord 2014;20(7):731– 7. doi: 10.1016/ j.parkreldis.2014.03.019.
60. Hacker M, Tonascia J, Turchan M, et al. Deep brain stimulation may reduce the relative risk of clinically important worsening in early stage Parkinson’s disease. Parkinsonism Relat Disord 2015;21(10):1177– 83. doi: 10.1016/ j.parkreldis.2015.08.008.
61. Ngoga D, Mitchell R, Kausar J, et al. Deep brain stimulation improves survival in severe Parkinson’s disease. J Neurol Neurosurg Psychiatry 2014;85(1):17– 22. doi: 10.1136/ jnnp-2012-304715.
62. DeLong MR, Huang KT, Gallis J, et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson’s disease. JAMA Neurol 2014;71(10):1290– 5. doi: 10.1001/ jamaneurol.2014.1272.
63. Chiou SM. Benefits of subthalamic stimulation for elderly patients aged 70 years or older. Clin Neurol Neurosurg 2016;149:81– 6. doi: 10.1016/ j.clineuro.2016.07.028.
64. Waln O, Shahed-Jimenez J. Rechargeable deep brain stimulation implantable pulse generators in movement disorders: patient satisfaction and conversion parameters. Neuromodulation 2014;17(5):425– 30. doi: 10.1111/ ner.12115.
65. Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 2006;21(Suppl 14):S284– 9.
66. Chen CC, Brücke C, Kempf F. Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr Biol 2006;16(22):952– 3.
67. Connolly AT, Vetter RJ, Hetke JF, et al. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures. IEEE Trans Biomed Eng 2016;63(1):148– 57. doi: 10.1109/ TBME.2015.2492921.
68. Contarino MF, Bour LJ, Verhagen R, et al. Direc-tional steering: a novel approach to deep brain stimulation. Neurology 2014;83(13):1163– 9. doi: 10.1212/ WNL.0000000000000823.
69. Benazzouz A, Gao DM, Ni ZG, et al. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 2000;99(2):289– 95.
70. Lafreniere-Roula M, Kim E, Hutchinson WD, et al. High-frequency microstimulation in human globus pallidus and substantia nigra. Exp Brain Res 2010;205(2):251– 61. doi: 10.1007/ s00221-010-2362-8.
71. Weinberger M, Hutchinson WD, Alavi M, et al. Oscillatory activity in the globus pallidus internus: comparison between Parkinsons’s disease and dystonia. Clin Neurophysiol 2012;123(2):358– 68. doi: 10.1016/ j.clinph.2011.07.029.
72. Chen CC, Kuhn AA, Hoffmann KT, et al. Oscillatory pallidal focal field potential activity correlates with involuntary EMG in dystonia. Neurology 2006;66(3):418– 20.
73. Shin DS, Samoilova M, Cotic M, et al. High frequency stimulation or elevated K+ depresses neuronal activity in the rat entopeduncular nucleus. Neuroscience 2007;149(1):68– 86.
74. Chiken S, Nambu A. High-frequency pallidal stimulation disrupts information flow through the pallidum by GABAergic inhibition. J Neurosci 2013;33(6):2268– 80. doi: 10.1523/ JNEUROSCI.4144-11.2013.
75. Yan N, Chen N, Zhu H, et al. High-frequency stimulation of nucleus accumbens changes in dopaminergic reward circuit. PLoS one 2013;8(11):e79318. doi: 10.1371/ journal.pone.0079318.
76. Hashimoto T, Elder CM, Okun MS, et al. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003;23(5):1916– 23.
77. Stefani A, Fedele E, Galati S, et al. Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 2005;57(3):448– 52.
78. Karimi M, Golchin N, Tabbal SD, et al. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 2008;131(Pt 10):2710– 9. doi: 10.1093/ brain/ awn179.
79. Vedam-Mai V, van Battum EY, Kamphuis W, et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry 2012;17(2):124– 31. doi: 10.1038/ mp.2011.61.
80. Li Q, Ke Y, Chan DC, et al. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron 2012;76(5):1030– 41. doi: 10.1016/ j.neuron.2012.09.032.
81. Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease? Ann NY Acad Sci 2012;1265:9– 24. doi: 10.1111/ j.1749-6632.2012.06650.x.
82. Anderson TR, Hu B, Iremonger K, et al. Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. J Neurosci 2006;26(3):841– 50. doi: 10.1523/ JNEUROSCI.3523-05.2006.
83. Kringelbach ML, Green AL, Aziz TZ. Balancing the brain: resting state networks and deep brain stimulation. Front Integr Neurosci 2011;5:8. doi: 10.3389/ fnint.2011.00008.
84. de Hemptinne C, Swann NC, Ostrem JL, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci 2015;18(5):779– 86. doi: 10.1038/ nn.3997.
85. Smith Y, Wichmann T. The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord 2015;30(3):293-5. doi: 10.1002/ mds.26095.
86. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003;18(4):357– 63.
87. Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractrography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci 2012;6:15. doi: 10.3389/ fnint.2012.00015.
88. Xiaowu H, Xiufeng J, Xiaoping Z, et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord 2010;16(2):96– 100. doi: 10.1016/ j.parkreldis.2009.07.013.
89. Zibetti M, Romagnolo A, Crobeddu E, et al. Does intraoperative microrecording really increase the risk of hemorrhagic complications in deep brain stimulation? Brain Stimul 2014;7(6):911– 2. doi: 10.1016/ j.brs.2014.07.037.
90. Larson PS, Starr PA, Bates G, et al. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 2012;70(1 Suppl. Operative):95– 103. doi: 10.1227/ NEU.0b013e31822f4a91.
91. Ostrem JL, Ziman N, Galifianakis NB, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg 2016;124(4):908– 16. doi: 10.3171/ 2015.4.JNS15173.
92. He N, Ling H, Ding B, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015;36(11):4407– 20. doi: 10.1002/ hbm.22928.
93. Oyama G, Foote KD, Hwynn N, et al. Rescue leads: a salvage technique for selected patients with a suboptimal response to standard DBS therapy. Parkinsonism Relat Disord 2011;17(6):451– 5. doi: 10.1016/ j.parkreldis.2011.03.009.
94. Miocinovic S, Khemani P, Whiddon R, et al. Outcomes, management, and potential mechanisms of interleavig deep brain stimulation settings. Parkinsonism Relat Disord 2014;20(12):1434– 7. doi: 10.1016/ j.parkreldis.2014.10.011.
95. Timmermann L, Jain R, Chen L, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomized, prospective, multicenter, open-label study. Lancet Neurol 2015;14(7):693– 701. doi: 10.1016/ S1474-4422(15)00087-3.
96. Urgošík D, Jech R, Růžička E. Hluboká mozková stimulace u nemocných s extrapyramidovými poruchami pohybu – stereotaktická procedura a intraoperační nálezy. Cesk Slov Neurol 2011;74/ 107(2):175– 186.
97. Voges J, Hilker R, Bötzel K, et al. Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 2007;22(10):1486– 9.
98. Fenoy AJ, Simpson RK. Management of device-related wound complications in deep brain stimulation surgery. J Neurosurg 2012;116(6):1324– 32. doi: 10.3171/ 2012.1.JNS111798.
99. Bhatia R, Dalton A, Richards M, et al. The incidence of deep brain stimulator hardware infection: the effect of change in antibiotic prophylaxis regimen and review of the literature. Br J Neurosurg 2011;25(5):625– 31. doi: 10.3109/ 02688697.2011.566384.
100. Chan DT, Zhu XL, Yeung JH, et al. Complications of deep brain stimulation: a collective review. Asian J Surg 2009;32(4):258– 63. doi: 10.1016/ S1015-9584(09)60404-8.
101. Fernandez FS, Alvarez Vega MA, Antuna Ramos A, et al. Lead fractures in deep brain stimulation during long-term follow-up. Parkinsons Dis 2010;2010:409356. doi: 10.4061/ 2010/ 409356.
102. Amami P, Dekker I, Piacentini S, et al. Impulse control behaviours in patients with Parkinson’s disease after subthalamic deep brain stimulation: de novo cases and 3-year follow-up. J Neurol Neurosurg Psychiatry 2015;86(5):562– 4. doi: 10.1136/ jnnp-2013-307214.
103. Kupsch A, Tagliati M, Vidailhet M, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord 2011;26(Suppl 1):S37– 53. doi: 10.1002/ mds.23624.
104. Galati S, Stefani A. Deep brain stimulation of the subthalamic nucleus: All that glitters isn’t gold? Mov Disord 2015;30(5):632– 7. doi: 10.1002/ mds.26149.
105. Little S, Pogosyan A, Neal S. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013;74(3):449– 57. doi: 10.1002/ ana.23951.
106. Rosa M, Arlotti M, Ardolino G. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov Disord 2015;30(7):1003– 5. doi: 10.1002/ mds.26241.
107. Hirschmann J, Ozkurt TE, Butz M. Differential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson’s disease. Neuroimage 2013;68:203– 13. doi: 10.1016/ j.neuroimage.2012.11.036.
108. Beuter A, Lefaucheur JP, Modolo J. Closed-loop cortical neuromodulation in Parkinson’s disease: an alternative to deep brain stimulation? Clin Neurophysiol 2014;125(5):874– 85. doi: 10.1016/ j.clinph.2014.01.006.
109. Grahn PJ, Mallory GW, Khurram OU, et al. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci 2014;8:169. doi: 10.3389/ fnins.2014.00169.
110. Little S, Pogosyan A, Kuhn AA, et al. Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp Neurol 2012;236(2):383– 8. doi: 10.1016/ j.expneurol.2012.04.024.
111. Bronte-Stewart H, Barberini C, Koop MM, et al. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attentuation after deep brain stimulation. Exp Neurol 2009;215(1):20– 8. doi: 10.1016/ j.expneurol.2008.09.008.
112. Whitmer D, de Solages C, Hill BC, et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci 2012;6:155. doi: 10.3389/ fnhum.2012.00155.
113. Shoulson I, Glaubiger GA, Chase TN. On-off response. Clinical and biochemical correlations during oral and intravenous levodopa administration in Parkinsonian patients. Neurology 1975;25(12):1144– 8.
114. Kurlan R, Rubin AJ, Miller C, et al. Duodenal delivery of levodopa for on-off fluctuations in parkinsonism: preliminary observations. Ann Neurol 1986;20(2):262– 5.
115. Bredberg E, Nilsson D, Johansson K, et al. Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson’s disease. Eur J Clin Pharmacol 1993;45(2):117– 22.
116. Nyholm D, Askmark H, Gomes-Trolin C, et al. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol 2003;26(3):156-63.
117. Nyholm D, Odin P, Johansson A, et al. Pharmacokinetics of leveodopa, carbidopa, and 3-O-methyldopa following 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease patients. AAPS J 2013;15(2):316– 23. doi: 10.1208/ s12248-012-9439-1.
118. Klempíř J, Havránková P, Jech R. Terapie Parkinsonovy nemoci levodopou v kontinuální enterální infuzi. Neurol Prax 2015;16(2):84– 88.
119. Wirdefeldt K, Odin P, Nyholm D. Levodopa-Carbidopa Intestinal Gel in Patients with Parkinson’s disease: A Systematic Review. CNS Drugs 2016;30(5):381– 404. doi: 10.1007/ s40263-016-0336-5.
120. Nyholm D, Nilsson Remahl AI, Dizdar N, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 2005;64(2):216– 23.
121. Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 2014;13(2):141– 9. doi: 10.1016/ S1474-4422(13)70293-X.
122. Fernandez HH, Standaert DG, Hauser RA, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord 2015;30(4):500– 9. doi: 10.1002/ mds.26123.
123. Antonini A, Yegin A, Preda C, et al. Global long-term study on motor and non-motor symptoms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson’s disease patients; 12-month interim outcomes. Parkinsonism Relat Disord 2015;21(3):231– 5. doi: 10.1016/ j.parkreldis.2014.12.012.
124. Fasano A, Ricciardi L, Lena F, et al. Intrajejunal levodopa infusion in advanced Parkinson’s disease: long-term effects on motor and non-motor symptoms and impact on patient’s and caregiver’s quality of life. Eur Rev Med Pharmacol Sci 2012;16(1):79– 89.
125. Honig H, Antonini A, Martinez-Martin P, et al. Intrajejunal levodopa infusion in Parkinson’s disease: a pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov Disord 2009;24(10):1468– 75. doi: 10.1002/ mds.22596.
126. Martinez-Martin P, Reddy P, Katzenschlager R, et al. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov Disord 2015;30(4):510– 6. doi: 10.1002/ mds.26067.
127. Todorova A, Samuel M, Brown RG, et al. Infusion therapies and development of impulse control disorders in advanced parkinson disease: clinical experience after 3 years’ follow-up. Clin Neuropharmacol 2015;38(4):132– 4. doi: 10.1097/ WNF.0000000000000091.
128. Pickut BA, van der Linden C, Dethy S, et al. Intestinal levodopa infusion: the Belgian experience. Neurol Sci 2014;35(6):861– 6. doi: 10.1007/ s10072-013-1612-5.
129. Caceres-Redondo MT, Carrillo F, Lama MJ, et al. Long-term levodopa/ carbidopa intestinal gel in advanced Parkinson’s disease. J Neurol 2014;261(3):561– 9. doi: 10.1007/ s00415-013-7235-1.
130. Zibetti M, Merola A, Artusi CA, et al. Levodopa/carbidopa intestinal gel infusion in advanced Parkinson’s disease: a 7- year experience. Eur J Neurol 2014;21(2):312– 8. doi: 10.1111/ ene.12309.
131. Lang AE, Rodriguez RL, Boyd JT, et al. Integrated safety of levodopa-carbidopa intestinal gel from prospective clinical trials. Mov Disord 2016;31(4):538– 46. doi: 10.1002/ mds.26485.
132. Epstein M, Johnson DA, Hawes R, et al. Long-Term PEG-J Tube Safety in Patients With Advanced Parkinson’s disease. Clin Transl Gastroenterol 2016;7:e159. doi: 10.1038/ ctg.2016.19.
133. Muller T, van Laar T, Cornblath DR, et al. Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord 2013;19(5):501– 7. doi: 10.1016/ j.parkreldis.2013.02.006.
134. Mancini F, Comi C, Oggioni GD, et al. Prevalence and features of peripheral neuropathy in Parkinson’s disease patients under different therapeutic regimens. Parkinsonism Relat Disord 2014;20(1):27– 31. doi: 10.1016/ j.parkreldis.2013.09.007.
135. Nyholm D, Jansson R, Willows T, et al. Long-term 24-hour duodenal infusion of levodopa: outcome and dose requirements. Neurology 2005;65(9):1506– 7.
136. Hagell P, Odin P, Shing M. Apomorphine in Parkinson’s disease. Bremen: UNI-MED-Verlag 2008.
137. Pietz K, Hagell P, Odin P. Subcutaneous apomorphine in late stage Parkinson’s disease: a long term follow up. J Neurol Neurosurg Psychiatry 1998;65(5):709– 16.
138. Stacy M, Silver D. Apomorphine for acute treatment of “off” episodes in Parkinson’s disease. Parkinsonism Relat Disord 2008;14(2):85– 92.
139. Garcia-Ruiz PJ, Sesar Ignacio A, Ares Pensado B, et al. Efficacy of long-term continuous apomorphine infusion in advanced Parkinson’s disease with motor fluctuation: a multicenter study. Mov Disord 2008;23(8):1130– 6. doi: 10.1002/ mds.22063.
140. Martinez-Martin P, Reddy P, Antonini A, et al. Chronic subcutaneous infusion therapy with apomorphine in advanced Parkinson’s disease compared to conventional therapy: a real life study of non motor effect. J Parkinsons Dis 2011;1(2):197– 203. doi: 10.3233/ JPD-2011-11037.
141. Todorova A, Martinez-Martin P, Martin A, et al. Daytime apomorphine infusion combined with transdermal rotigotine patch therapy is tolerated at 2 years: a 24 hours treatment option in Parkinson’s disease. Basal Ganglia 2013;3(2):127– 30.
142. Ribaric S. The pharmacological properties and therapeutic use of apomorphine. Molecules 2012;17(5):5289– 309. doi: 10.3390/ molecules17055289.
143. Ondo WG, Hunter C, Vuong KD, et al. The pharmacokinetic and clinical effects of tolcapone on a single dose of sublingual apomorphine in Parkinson’s disease. Parkinsonism Relat Disord 2000;6(4):237– 40.
144. Schwab RS, Amador LV, Lettvin JY. Apomorphine in Parkinson’s disease. Trans Am Neurol Assoc 1951;56:251– 3.
145. Cotzias GC, Papavasiliou PS, Tolosa ES, et al. Treatment of Parkinson’s disease with aporphines. Possible role of growth hormone. N Engl J Med 1976;294(11):567– 72.
146. D’Costa DF, Abbott RJ, Pye IF, et al. The apomorphine test in parkinsonian syndromes. J Neurol Neurosurg Psychiatry 1991;54(10):870– 2.
147. Netsomboon K, Partenhauser A, Rohrer JD, et al. Preactivated thiomers for intranasal delivery of apomorphine: in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016;109:35– 42. doi: 10.1016/ j.ejpb.2016.09.004.
148. Hauser RA, Olanow CW, Dzyngel B, et al. Sublingual apomorphine (APL-130277) for the acute conversion of OFF to ON in Parkinson’s disease. Mov Disord 2016;31(9):1366– 72. doi: 10.1002/ mds.26697.
149. LeWitt PA, Ondo WG, Van Lunen B, et al. Open-label study assessment of safety and adverse effects of subcutaneous apomorphine injections in treating “off” episodes in advanced Parkinson disease. Clin Neuropharmacol 2009;32(2):89– 93. doi: 10.1097/ WNF.0B013E31816D91F9.
150. Poewe W, Kleedorfer B, Gerstenbrandt F, et al. Subcutaneous apomorphine in Parkinson’s disease. Lancet 1988;1(8591):943.
151. Pollak P, Champay AS, Gaio JM, et al. Subcutaneous administration of apomorphine in motor fluctuations in Parkinson’s disease. Revue Neurol 1990;146(2):116– 22.
152. Borgemeester RW, Drent M, van Laar T. Motor and non-motor outcomes of continuous apomorphine infusion in 125 Parkinson’s disease patients. Parkinsonism Relat Disord 2016;23:17–22. doi: 10.1016/ j.parkreldis.2015.11.013.
153. Dewey RBJ, Hutton JT, LeWitt PA, et al. A randomized, double-blind, placebo-controlled trial of subcutaneously injected apomorphine for parkinsonian off-state events. Arch Neurol 2001;58(9):1385– 92.
154. Antonini A, Isaias IU, Rodolfi G, et al. A 5-year prospective assessment of advanced Parkinson disease patients treated with subcutaneous apomorphine infusion or deep brain stimulation. J Neurol 2011;258(4):579– 85. doi: 10.1007/ s00415-010-5793-z.
155. Drapier S, Eusebio A, Degos B, et al. Quality of life in Parkinson’s disease improved by apomorphine pump: the OPTIPUMP cohort study. J Neurol 2016;263(6):1111– 9. doi: 10.1007/ s00415-016-8106-3.
156. Literature review intermittent subcutaneous apomorphine therapy in Parkinson’s disease. Neurology 2004;62(6 Suppl 4):S12– 7.
157. Boyle A, Ondo WG. Apomorphine in the Treatment of Parkinson’s disease. CNS Drugs 2015;29(2):83– 9. doi: 10.1007/ s40263-014-0221-z.
158. Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord 2005;20(2):151– 7.
159. Kaňovsky P, Kubova D, Bareš M, et al. L-DOPA Induced Dyskinesias and the Continuous Subcutaneous Infusions of Apomorphine – Results of Two Years, Prospective Follow-Up. Mov Disord 2002;17:(1):188–91.
160. Kaňovský P, Kubová D, Bareš M, et al. Suppression of L-DOPA induced dyskinesias in advanced Parkinson’s disease by continuous subcutaneous infusions of apomorphine – results of one year, prospective follow-up. Cesk Slov Neurol N 2002;65/ 98(1):9– 14.
161. Clarke CE, Worth P, Grosset D, et al. Systematic review of apomorphine infusion, levodopa infusion and deep brain stimulation in advanced Parkinson’s disease. Parkinsonism Relat Disord 2009;15(10):728– 41. doi: 10.1016/ j.parkreldis.2009.09.005.
162. Isaacson S, Ondo WG, Pagan F. Apomorphine Improves Morning Akinesia in Parkinson’s Disease: Interim Analysis of the AM-IMPAKT Trial (P7.072). Neurology 2014;82(10):68– 9.
163. Todorova A, Chaudhuri KR. Subcutaneous apomorphine and non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 2013;19(12):1073– 8. doi: 10.1016/ j.parkreldis.2013.08.012.
164. Fernandez-Pajarin G, Sesar A, Ares B, et al. Evaluating the Efficacy of Nocturnal Continuous Subcutaneous Apomorphine Infusion in Sleep Disorders in Advanced Parkinson’s Disease: The APO-NIGHT Study. J Parkinsons Dis 2016;6(4):787– 92.
165. Borgemeester RW, Lees AJ, van Laar T. Parkinson’s disease, visual hallucinations and apomorphine: A review of the available evidence. Parkinsonism Relat Disord 2016;27:35– 40. doi: 10.1016/ j.parkreldis.2016.04.023.
166. Manson AJ, Hanagasi H, Turner K, et al. Intravenous apomorphine therapy in Parkinson’s disease clinical and pharmacokinetic observations. Brain J Neurol 2001;124(4):331– 40.
167. LeWitt PA. Subcutaneously administered apomorphine: pharmacokinetics and metabolism. Neurology 2004;62(6 Suppl 4):S8– 11.
168. Tribl GG, Sycha T, Kotzailias N, et al. Apomorphine in idiopathic restless legs syndrome: an exploratory study. J Neurol Neurosurg Psychiatry 2005;76(2):181– 5.
169. Fridman EA, Krimchansky BZ, Bonetto M, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj 2010;24(4):636– 41. doi: 10.3109/ 02699051003610433.
170. Himeno E, Ohyagi Y, Ma L, et al. Apomorphine treatment in Alzheimer mice promoting amyloid-βdegradation. Ann Neurol 2011;69(2):248– 56. doi: 10.1002/ ana.22319.
171. Yarnall AJ, Lashley T, Ling H, et al. Apomorphine: A potential modifier of amyloid deposition in Parkinson’s disease? Mov Disord 2016;31(5):668– 75. doi: 10.1002/ mds.26422.
172. Eggert K, Schrader C, Hahn M, et al. Continuous jejunal levodopa infusion in patients with advaced parkinson disease: practical aspects and outcome of motor and non-motor complications. Clin Neuropharmacol 2008;31(3):151– 66. doi: 10.1097/ wnf.0b013e31814b113e.
173. Kempster PA, O’Sullivan SS, Holton JL, et al. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain 2010;133(Pt 6):1755– 62. doi: 10.1093/ brain/ awq059.
174. Lundqvist C, Beiske AG, Reiertsen O, et al. Real life cost and quality of life associated with continuous intraduodenal levodopa infusion compared with oral treatment in Parkinson patients. J Neurol 2014;261(12):2438– 45. doi: 10.1007/ s00415-014-7515-4.
175. Pietzsch JB, Garner AM, Marks WJJ. Cost-Effectiveness of Deep Brain Stimulation for Advanced Parkinson’s Disease in the United Stated. Neuromodulation 2016;19(7):689– 97. doi: 10.1111/ ner.12474.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2017 Číslo 5
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Leber Hereditary Optic Neuropathy
- Essential Tremor – Is There a New Nosological Concept?
- Statin-induced Necrotizing Autoimmune Myopathy
- Invasive Methods in the Treatment of Advanced Parkinson’s Disease