#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Invasive Methods in the Treatment of Advanced Parkinson’s Disease


Authors: K. Gmitterová 1;  M. Minár 1;  Z. Košutzká 1;  P. Valkovič 1,2
Authors place of work: II. Neurologická klinika LF UK a UN Bratislava 1;  Inštitút normálnej a patologickej fyziológie, Slovenská akadémia vied, Bratislava 2
Published in the journal: Cesk Slov Neurol N 2017; 80/113(5): 503-516
Category: Minimonography
doi: https://doi.org/10.14735/amcsnn2017503

Summary

Advanced stages of Parkinson‘s disease are accompanied by a broad scale of motor and non-motor complications which negatively impact patients’ quality of life. The therapeutic influence of these complications resulting from the neurodegenerative nature of the underlying disease and are additionally caused by long-term use of dopaminergic treatment, represents a serious clinical problem. Recently, the therapeutic strategy has been focused on continuous dopaminergic stimulation to achieve the balanced control of symptoms. With disease progression and drug-induced complications conventional pharmacological procedures often fail to control clinical symptoms. Alternative methods rise to the forefront of therapeutic interest as they play an important role in the treatment of advanced Parkinson‘s disease. These options include: deep brain stimulation, subcutaneous application of apomorphine and levodopa/carbidopa intestinal gel therapy. Correct patient selection, consideration of specific non-motor symptoms and potential risks accompanying individual treatment modalities, significantly contribute to the selection of most appropriate procedure.

Key words:
Parkinson’s disease – motor complications of advanced Parkinson’s disease – non-motor complications – continuous dopaminergic stimulation – levodopa/carbidopa intestinal gel – apomorphine – deep brain stimulation – DBS

The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.


Zdroje

1. Jankovic J. Parkinson’s dis­ease: clinical features and dia­gnosis. J Neurol Neurosurg Psychiatry 2008;79(4):368– 76. doi: 10.1136/ jn­np.2007.131045.

2. Kurčová S, Menšíková K, Kaiserová M, et al. Premotorické a non-motorické príznaky Parkinsonovej choroby –  taxonómia, klinická manifestácia a neuropatologické koreláty. Cesk Slov Neurol N 2016;79/ 112(3):255– 70. doi: 10.14735/ amcsn­n2016255.

3. Lee A, Gilbert RM. Epidemiology of Parkinson’s dis­ease. Neurol Clin 2016;34(4):955– 65. doi: 10.1016/ j.ncl.2016.06.012.

4. Cotzias GC, Van Woert MH, Schif­fer LM. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276(7):374– 9. doi: 10.1056/ NEJM196702162760703.

5. Hauser RA. Levodopa: past, present and future. Eur Neurol 2009;62(1):1– 8. doi: 10.1159/ 000215875.

6. Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson’s dis­ease: cur­rent controversies. Mov Disord 2004;19(9):997– 1005. doi: 10.1002/ mds.20243.

7. LeWitt PA. Levodopa ther­apy for Parkinson’s dis­ease: Pharmacokinetics and pharmacodynamics. Mov Disord 2015;30(1):64– 72. doi: 10.1002/ mds.26082.

8. Cibulcik F, Benetin J, Kurca E, et al. Ef­fects of rasagiline on freez­­ing of gait in Parkinson’s dis­ease - an open-label, multicenter study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016;160(4):549– 552. doi: 10.5507/ bp.2016.023.

9. Kaňovský P, Farníková K. Farmakoterapie pokročilé Parkinsonovy nemoci ve světle doporučených postupů. Neurol Prax 2010;11(4):241– 5.

10. Růzicka E, Streitová H, Jech R, et al. Amantadine infusion in treatment of motor fluctuations and dyskinesias in Parkinson’s dis­ease. J Neural Transm (Vien­na) 2000; 07(11): 1297– 306.

11. Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctu­-ation in Parkinson’s dis­ease: frequent and disabling. Neurology 2002;59(3):408– 13.

12. Storch A, Schneider CB, Wolz M, et al. Nonmotor fluctuations in Parkinson dis­ease: severity and cor­relation with motor complications. Neurology 2013;80(9):800– 9. doi: 10.1212/ WNL.0b013e318285c0ed.

13. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the culumative literature. Mov Disord 2001;16(3):448– 58.

14. Weintraub D, David AS, Evans AH, et al. Clinical spectrum of impulse control disorders in Parkinson’s dis­ease. Mov Disord 2015;30(2):121– 7. doi: 10.1002/ mds. 26016.

15. Grandas FJ, Galiano ML, Tabernero C. Risk factors for levodopa-induced dyskinesias in Parkinson’s dis­ease. J Neurol 1999;246(12):1127– 33.

16. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson’s dis­ease: scientific rationale and clinical implications. Lancet Neurol 2006;5(8):677– 87.

17. Nutt JG, Woodward WR, Beckner RM, et al. Ef­fect of peripheral catechol-O-methyltransferase inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients. Neurology 1994;44(5):913– 9.

18. Hardoff R, Sula M, Tamir A, et al. Gastric emty­­ing time and gastric motility in patients with Parkinson’s dis­ease. Mov Disord 2001;16(6):1041– 7.

19. Mil­ler DW, Abercrombie ED. Role of high-af­finity dopamine uptake and impulse activity in the appear­ance of extracel­lular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 1999;72(4):1516– 22.

20. Bibbiani F, Constantini LC, Patel R, et al. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 2005;192(1):73– 8.

21. Fox HC, Katzenschlager R, Lim SY, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symp­toms of Parkinson’s dis­ease. Mov Disord 2011;26(Suppl 3):S2– 41. doi: 10.1002/ mds.23829.

22. Kahan J, Mancini L, Urner M, et al. Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupl­­ing dur­­ing voluntary movements in Parkinson’s dis­ease. PLoS one 2012;7(12):e50270. doi: 10.1371/ journal.pone.0050270.

23. Benabid AL, Pol­lak P, Louveau A, et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson dis­ease. Appl Neurophysiol 1987;50(1– 6):344– 6.

24. Tasker RR. Ablative ther­apy for movement disorders. Does thalamotomy alter the course of Parkinson’s dis­ease? Neurosurg Clin N Am 1998;9(2):375– 80.

25. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s dis­ease. N Engl J Med 2006;355(9):896– 908.

26. Deuschl G, Agid Y. Subthalamic neurostimulation for Parkinson’s dis­ease with early fluctuations: balanc­­ing the risks and benefits. Lancet Neurol 2013;12(10):1025– 34. doi: 10.1016/ S1474-4422(13)70151-0.

27. Okun MS, Gal­lo BV, Mandybur G, et al. Subthalamic deep brain stimulation with a constant-cur­rent device in Parkinson’s dis­ease: an open-label randomized control­led trial. Lancet Neurol 2012;11(2):140– 9. doi: 10.1016/ S1474-4422(11)70308-8.

28. Wil­liams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical ther­apy versus best medical ther­apy alone for advanced Parkinson’s dis­ease (PD SURG trial): a randomized, open-label trial. Lancet Neurol 2010;9(6):581– 91. doi: 10.1016/ S1474-4422(10)70093-4.

29. Schuepbach WM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s dis­ease with early motor complications. N Engl J Med 2013;368(7):610– 22. doi: 10.1056/ NEJMoa1205158.

30. Xie CL, Shao B, Chen J, et al. Ef­fects of neurostimulation for advanced Parkinson’s dis­ease patiens on motor symp­toms: A multiple-treatments metaanalysas of randomized control­led trials. Sci Rep 2016;6:25285. doi: 10.1038/ srep25285.

31. Krahulik D, Nevrly M, Otruba P, et al. Deep Brain Stimulation in Olomouc-Techniques, Electrode Locations, and Outcomes. Cesk Slov Neurol N 2014;77/ 110(1):54– 8.

32. Rothlind JC, York MK, Carlson K, et al. Neuropsychological changes fol­low­­ing deep brain stimulation surgery for Parkinson’s dis­ease: comparison of treatment at pal­lidal and subthalamic targets versus best medical ther­apy. J Neurol Neurosurg Psychiatry 2015;86(6):622– 9. doi: 10.1136/ jn­np-2014-308119.

33. Anderson VC, Burchiel KJ, Hogarth P, et al. Pal­lidal vs subthalamic nucleus deep brain stimulation in Parkinson dis­ease. Arch Neurol 2005;62(4):554– 60.

34. Fol­lett KA, Weaver FM, Stern M, et al. Pal­lidal versus subthalamic deep-brain stimulation for Parkinson’s dis­ease. N Engl J Med 2010;362(22):2077– 91. doi: 10.1056/ NEJMoa0907083.

35. Combs HL, Fol­ley BS, Ber­ry DT, et al. Cognition and Depres­sion Fol­low­­ing Deep Brain Stimulation of the Subthalamic Nucleus and Globus Pal­lidus Pars Internus in Parkinson’s Dis­ease: A Meta-Analysis. Neuropsychol Rev 2015;25(4):439– 54. doi: 10.1007/ s11065-015-9302-0.

36. Odekerken VJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pal­lidus bilateral deep brain stimulation for advanced Parkinson’s dis­ease (NSTAPS study): a randomised control­led trial. Lancet Neurol 2013;12(1):37– 44. doi: 10.1016/ S1474-4422(12)70264-8.

37. Martinez-Ramirez D, Hu W, Bona AR, et al. Update on deep brain stimulation in Parkinson’s dis­ease. Transl Neurodegener 2015;4:12. doi: 10.1186/ s40035-015-0034-0.

38. Jung YJ, Kim HJ, Jeon BS, et al. An 8-Year Fol­low-upon the Ef­fect of Subthalamic Nucleus Deep BrainStimulation on Pain in Parkinson Dis­ease. JAMA Neurol. 2015;72(5):504– 10. doi: 10.1001/ jamaneurol.2015.8.

39. Volkmann J, Albanese A, Antonini A, et al. Select­­ing deep brain stimulation or infusion ther­apies in advanced Parkinson’s dis­ease: an evidence-based review. J Neurol 2013;260(11):2701– 14. doi: 10.1007/ s00415-012-6798-6.

40. Samuel M, Rodriguez-Oroz M, Antonini A, et al. Impulse Control Disorders in Parkinson’s Dis­ease: Management, Controversies, and Potential Approaches. Mov Disord 2015;30(2):150– 9. doi: 10.1002/ mds.26099.

41. Merola A, Romagnolo A, Rizzi L, et al. Impulse control behaviors and subthalamic deep brain stimulation in Parkinson’s dis­ease. J Neurol 2017;264(1):40– 48. doi: 10.1007/ s00415-016-8314-x.

42. Metmann LV, O’Leary ST. Role of surgery in the treatment of motor complications. Mov Disord 2005;20(S11):S45– 56.

43. Baláž M, Bočková M, Bareš M, et al. Kvalita života po hluboké mozkové stimulaci u pa­cientů s pokročilou Parkinsonovou nemocí. Cesk Slov Neurol 2011;74(5): 564– 8.

44. Xu F, Ma W, Huanf Y, et al. Deep brain stimulation of pal­lidal versus subthalamic for patients with Parkinson’s dis­ease: a meta-analysis of control­led clinical trials. Neuropsychiatr Dis Treat 2016; 12:1435– 1444. doi: 10.2147/ NDT.S105513.

45. St George RJ, Carlson – Kuhta P, Nutt JG, et al. The ef­fect of deep brain stimulation randomized by site on balance in Parkinson’s dis­ease. Mov Disord 2014;29(7):949– 53. doi: 10.1002/ mds.25831.

46. St George RJ, Nutt JG, Burchiel KJ, et al. A meta-regres­sion of the long-term ef­fects of deep brain stimulation on balance and gait in PD. Neurology 2010;75(14):1292– 9. doi: 10.1212/ WNL.0b013e3181f61329.

47. Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s dis­ease. Neuroreport 2005;16(17):1883– 7.

48. Thevathasan W, Cole MH, Graepel CL, et al. A spatiotemporal analysis of gait freez­­ing and the impact of pedunculopontine nucleus stimulation. Brain 2012;135(Pt 5):1446– 54. doi: 10.1093/ brain/ aws039.

49. Chieng LO, Madahavan K, Wang MY. Deep brain stimulation as a treatment for Parkinson’s dis­ease related to camptocormia. J Clin Neurosci 2015;22(10):1555– 61. doi: 10.1016/ j.jocn.2015.05.018.

50. Weiss D, Walach M, Meisner C, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s dis­ease? A randomized control­led trial. Brain 2013;136 (Pt 7):2098– 108. doi: 10.1093/ brain/ awt122.

51. Gooneratne IK, Green AL, Dugan P, et al. Compar­­ing neurostimulation technologies in refractory focal-onset epilepsy. J Neurol Neurosurg Psychiatry 2016;87(11):1174– 82. doi: 10.1136/ jn­np-2016-313297.

52. Boccard SG, Pereira EA, Aziz TZ. Deep brain stimulation for chronic pain. J Clin Neurosci 2015;22(10):1537– 43. doi: 10.1016/ j.jocn.2015.04.005.

53. Schrock LE, Mink JW, Woods DW, et al. Tourette syndrome deep brain stimulation: a rewiew and updated recom­mendations. Mov Disord 2015;30(4):448– 71. doi: 10.1002/ mds.26094.

54. Accol­la EA, Aust S, Merkl A, et al. Deep brain stimulation of the posterior gyrus rectus region for treatment resistant depres­sion. J Af­fect Disord 2016;194:33– 7. doi: 10.1016/ j.jad.2016.01.022.

55. Vedam-Mai V, Gardner B, Okun MS, et al. Increased precursor cell proliferation after deep brain stimulation for Parkinson’s dis­ease: a human study. PLoS One 2014;9(3):e88770. doi: 10.1371/ journal.pone.0088770.

56. Spieles-Engemann AL, Behbehani MM, Col­lier TJ, et al. Stimulation of the rat subthalamic nucleus is neuroprotective fol­low­­ing significant nigral dopamine neuron los­s. Neurobio­l Dis 2010;39(1):105– 15. doi: 10.1016/ j.nbd.2010.03.009.

57. Wal­lace BA, Ashkan K, Heise CE, et al. Survival of midbrain dopaminergic cel­ls after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 2007;130:2129– 2145.

58. Odin P, Ray-Chaudhury K, Slevin JT, et al. Col­lective physician perspectives on non-oral medication ap­proaches for the management of clinical­ly relevant unresolved is­sues in Parkinson’s dis­ease: consensus from an international survey and discus­sion program. Parkinsonism Relat Disord 2015;21(10):1133– 44. doi: 10.1016/ j.parkreldis.2015.07.020.

59. Charles D, Konrad PE, Neimat JS, et al. Subthalamic nucleus beep brain stimulation in early stage Parkinson’s dis­ease. Parkinsonism Relat Disord 2014;20(7):731– 7. doi: 10.1016/ j.parkreldis.2014.03.019.

60. Hacker M, Tonascia J, Turchan M, et al. Deep brain stimulation may reduce the relative risk of clinical­ly important worsen­­ing in early stage Parkinson’s dis­ease. Parkinsonism Relat Disord 2015;21(10):1177– 83. doi: 10.1016/ j.parkreldis.2015.08.008.

61. Ngoga D, Mitchell R, Kausar J, et al. Deep brain stimulation improves survival in severe Parkinson’s dis­ease. J Neurol Neurosurg Psychiatry 2014;85(1):17– 22. doi: 10.1136/ jn­np-2012-304715.

62. DeLong MR, Huang KT, Gal­lis J, et al. Ef­fect of advanc­­ing age on outcomes of deep brain stimulation for Parkinson’s dis­ease. JAMA Neurol 2014;71(10):1290– 5. doi: 10.1001/ jamaneurol.2014.1272.

63. Chiou SM. Benefits of subthalamic stimulation for elderly patients aged 70 years or older. Clin Neurol Neurosurg 2016;149:81– 6. doi: 10.1016/ j.clineuro.2016.07.028.

64. Waln O, Shahed-Jimenez J. Rechargeable deep brain stimulation implantable pulse generators in move­ment disorders: patient satisfaction and conversion parameters. Neuromodulation 2014;17(5):425– 30. doi: 10.1111/ ner.12115.

65. Volkmann J, Moro E, Pahwa R. Basic algorithms for the program­m­­ing of deep brain stimulation in Parkinson’s dis­ease. Mov Disord 2006;21(Suppl 14):S284– 9.

66. Chen CC, Brücke C, Kempf F. Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr Biol 2006;16(22):952– 3.

67. Con­nol­ly AT, Vetter RJ, Hetke JF, et al. A Novel Lead Design for Modulation and Sens­­ing of Deep Brain Structures. IEEE Trans Biomed Eng 2016;63(1):148– 57. doi: 10.1109/ TBME.2015.2492921.

68. Contarino MF, Bour LJ, Verhagen R, et al. Direc­­-t­ional steering: a novel approach to deep brain stimulation. Neurology 2014;83(13):1163– 9. doi: 10.1212/ WNL.0000000000000823.

69. Benazzouz A, Gao DM, Ni ZG, et al. Ef­fect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 2000;99(2):289– 95.

70. Lafreniere-Roula M, Kim E, Hutchinson WD, et al. High-frequency microstimulation in human globus pal­lidus and substantia nigra. Exp Brain Res 2010;205(2):251– 61. doi: 10.1007/ s00221-010-2362-8.

71. Weinberger M, Hutchinson WD, Alavi M, et al. Oscil­latory activity in the globus pal­lidus internus: comparison between Parkinsons’s dis­ease and dystonia. Clin Neurophysiol 2012;123(2):358– 68. doi: 10.1016/ j.clinph.2011.07.029.

72. Chen CC, Kuhn AA, Hof­fmann KT, et al. Oscil­latory pal­lidal focal field potential activity cor­relates with invol­untary EMG in dystonia. Neurology 2006;66(3):418– 20.

73. Shin DS, Samoilova M, Cotic M, et al. High frequency stimulation or elevated K+ depres­ses neuronal activity in the rat entopeduncular nucleus. Neuroscience 2007;149(1):68– 86.

74. Chiken S, Nambu A. High-frequency pal­lidal stimulation disrupts information flow through the pal­lidum by GABAergic inhibition. J Neurosci 2013;33(6):2268– 80. doi: 10.1523/ JNEUROSCI.4144-11.2013.

75. Yan N, Chen N, Zhu H, et al. High-frequency stimulation of nucleus accumbens changes in dopaminergic reward circuit. PLoS one 2013;8(11):e79318. doi: 10.1371/ journal.pone.0079318.

76. Hashimoto T, Elder CM, Okun MS, et al. Stimulation of the subthalamic nucleus changes the fir­­ing pattern of pal­lidal neurons. J Neurosci 2003;23(5):1916– 23.

77. Stefani A, Fedele E, Galati S, et al. Subthalamic stimulation activates internal pal­lidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 2005;57(3):448– 52.

78. Karimi M, Golchin N, Tabbal SD, et al. Subthalamic nucleus stimulation-induced regional blood flow responses cor­relate with improvement of motor signs in Parkinson dis­ease. Brain 2008;131(Pt 10):2710– 9. doi: 10.1093/ brain/ awn179.

79. Vedam-Mai V, van Battum EY, Kamphuis W, et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry 2012;17(2):124– 31. doi: 10.1038/ mp.2011.61.

80. Li Q, Ke Y, Chan DC, et al. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron 2012;76(5):1030– 41. doi: 10.1016/ j.neuron.2012.09.032.

81. Little S, Brown P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s dis­ease? Ann NY Acad Sci 2012;1265:9– 24. doi: 10.1111/ j.1749-6632.2012.06650.x.

82. Anderson TR, Hu B, Iremonger K, et al. Selective attenuation of af­ferent synaptic transmis­sion as a mechan­ism of thalamic deep brain stimulation-induced tremor ar­rest. J Neurosci 2006;26(3):841– 50. doi: 10.1523/ JNEUROSCI.3523-05.2006.

83. Kringelbach ML, Green AL, Aziz TZ. Balanc­­ing the brain: rest­­ing state networks and deep brain stimulation. Front Integr Neurosci 2011;5:8. doi: 10.3389/ fnint.2011.00008.

84. de Hemptin­ne C, Swann NC, Ostrem JL, et al. Ther­apeutic deep brain stimulation reduces cortical phase-amplitude coupl­­ing in Parkinson’s dis­ease. Nat Neurosci 2015;18(5):779– 86. doi: 10.1038/ n­n.3997.

85. Smith Y, Wichmann T. The cortico-pal­lidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord 2015;30(3):293-5. doi: 10.1002/ mds.26095.

86. Brown P. Oscil­latory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s dis­ease. Mov Disord 2003;18(4):357– 63.

87. Henderson JM. “Con­nectomic surgery”: dif­fusion tensor imag­­ing (DTI) tractrography as a target­­ing modality for surgical modulation of neural networks. Front Integr Neurosci 2012;6:15. doi: 10.3389/ fnint.2012.00015.

88. Xiaowu H, Xiufeng J, Xiaop­­ing Z, et al. Risks of intracranial hemor­rhage in patients with Parkinson’s dis­ease receiv­­ing deep brain stimulation and ablation. Parkinsonism Relat Disord 2010;16(2):96– 100. doi: 10.1016/ j.parkreldis.2009.07.013.

89. Zibetti M, Romagnolo A, Crobeddu E, et al. Does intraoperative microrecord­­ing real­ly increase the risk of hemor­rhagic complications in deep brain stimulation? Brain Stimul 2014;7(6):911– 2. doi: 10.1016/ j.brs.2014.07.037.

90. Larson PS, Starr PA, Bates G, et al. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of target­­ing accuracy. Neurosurgery 2012;70(1 Suppl. Operative):95– 103. doi: 10.1227/ NEU.0b013e31822f4a91.

91. Ostrem JL, Ziman N, Galifianakis NB, et al. Clinical outcomes us­­ing ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s dis­ease. J Neurosurg 2016;124(4):908– 16. doi: 10.3171/ 2015.4.JNS15173.

92. He N, L­­ing H, D­­ing B, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson’s dis­ease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015;36(11):4407– 20. doi: 10.1002/ hbm.22928.

93. Oyama G, Foote KD, Hwynn N, et al. Rescue leads: a salvage technique for selected patients with a suboptimal response to standard DBS ther­apy. Parkinsonism Relat Disord 2011;17(6):451– 5. doi: 10.1016/ j.parkreldis.2011.03.009.

94. Miocinovic S, Khemani P, Whiddon R, et al. Outcomes, management, and potential mechanisms of interleavig deep brain stimulation settings. Parkinsonism Relat Disord 2014;20(12):1434– 7. doi: 10.1016/ j.parkreldis.2014.10.011.

95. Tim­mermann L, Jain R, Chen L, et al. Multiple-source cur­rent steer­­ing in subthalamic nucleus deep brain stimulation for Parkinson’s dis­ease (the VANTAGE study): a non-randomized, prospective, multicenter, open-label study. Lancet Neurol 2015;14(7):693– 701. doi: 10.1016/ S1474-4422(15)00087-3.

96. Urgošík D, Jech R, Růžička E. Hluboká mozková stimulace u nemocných s extrapyramidovými poruchami pohybu –  stereotaktická procedura a intraoperační nálezy. Cesk Slov Neurol 2011;74/ 107(2):175– 186.

97. Voges J, Hilker R, Bötzel K, et al. Thirty days complication rate fol­low­­ing surgery performed for deep-brain-stimulation. Mov Disord 2007;22(10):1486– 9.

98. Fenoy AJ, Simpson RK. Management of device-related wound complications in deep brain stimulation surgery. J Neurosurg 2012;116(6):1324– 32. doi: 10.3171/ 2012.1.JNS111798.

99. Bhatia R, Dalton A, Richards M, et al. The incidence of deep brain stimulator hardware infection: the ef­fect of change in antibio­tic prophylaxis regimen and review of the literature. Br J Neurosurg 2011;25(5):625– 31. doi: 10.3109/ 02688697.2011.566384.

100. Chan DT, Zhu XL, Yeung JH, et al. Complications of deep brain stimulation: a col­lective review. Asian J Surg 2009;32(4):258– 63. doi: 10.1016/ S1015-9584(09)60404-8.

101. Fernandez FS, Alvarez Vega MA, Antuna Ramos A, et al. Lead fractures in deep brain stimulation dur­­ing long-term fol­low-up. Parkinsons Dis 2010;2010:409356. doi: 10.4061/ 2010/ 409356.

102. Amami P, Dekker I, Piacentini S, et al. Impulse control behaviours in patients with Parkinson’s dis­ease after subthalamic deep brain stimulation: de novo cases and 3-year fol­low-up. J Neurol Neurosurg Psychiatry 2015;86(5):562– 4. doi: 10.1136/ jn­np-2013-307214.

103. Kupsch A, Tagliati M, Vidailhet M, et al. Early postoperative management of DBS in dystonia: program­ming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord 2011;26(Suppl 1):S37– 53. doi: 10.1002/ mds.23624.

104. Galati S, Stefani A. Deep brain stimulation of the subthalamic nucleus: All that glitters isn’t gold? Mov Disord 2015;30(5):632– 7. doi: 10.1002/ mds.26149.

105. Little S, Pogosyan A, Neal S. Adaptive deep brain stimulation in advanced Parkinson dis­ease. Ann Neurol 2013;74(3):449– 57. doi: 10.1002/ ana.23951.

106. Rosa M, Arlotti M, Ardolino G. Adaptive deep brain stimulation in a freely mov­­ing Parkinsonian patient. Mov Disord 2015;30(7):1003– 5. doi: 10.1002/ mds.26241.

107. Hirschmann J, Ozkurt TE, Butz M. Dif­ferential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson’s dis­ease. Neuroimage 2013;68:203– 13. doi: 10.1016/ j.neuroimage.2012.11.036.

108. Beuter A, Lefaucheur JP, Modolo J. Closed-loop cortical neuromodulation in Parkinson’s dis­ease: an alternative to deep brain stimulation? Clin Neurophysiol 2014;125(5):874– 85. doi: 10.1016/ j.clinph.2014.01.006.

109. Grahn PJ, Mal­lory GW, Khur­ram OU, et al. A neurochemical closed-loop control­ler for deep brain stimulation: toward individualized smart neuromodulation ther­apies. Front Neurosci 2014;8:169. doi: 10.3389/ fnins.2014.00169.

110. Little S, Pogosyan A, Kuhn AA, et al. Beta band stability over time cor­relates with Parkinsonian rigidity and bradykinesia. Exp Neurol 2012;236(2):383– 8. doi: 10.1016/ j.expneurol.2012.04.024.

111. Bronte-Stewart H, Barberini C, Koop MM, et al. The STN beta-band profile in Parkinson’s dis­ease is stationary and shows prolonged attentuation after deep brain stimulation. Exp Neurol 2009;215(1):20– 8. doi: 10.1016/ j.expneurol.2008.09.008.

112. Whitmer D, de Solages C, Hill BC, et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s dis­ease. Front Hum Neurosci 2012;6:155. doi: 10.3389/ fnhum.2012.00155.

113. Shoulson I, Glaubiger GA, Chase TN. On-off response. Clinical and bio­chemical cor­relations dur­­ing oral and intravenous levodopa administration in Parkinsonian patients. Neurology 1975;25(12):1144– 8.

114. Kurlan R, Rubin AJ, Mil­ler C, et al. Duodenal delivery of levodopa for on-off fluctuations in parkinsonism: preliminary observations. Ann Neurol 1986;20(2):262– 5.

115. Bredberg E, Nils­son D, Johans­son K, et al. Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic ef­fect in severe Parkinson’s dis­ease. Eur J Clin Pharmacol 1993;45(2):117– 22.

116. Nyholm D, Askmark H, Gomes-Trolin C, et al. Optimiz­­ing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol 2003;26(3):156-63.

117. Nyholm D, Odin P, Johans­son A, et al. Pharmacokinetics of leveodopa, carbidopa, and 3-O-methyldopa fol­low­­ing 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s dis­ease patients. AAPS J 2013;15(2):316– 23. doi: 10.1208/ s12248-012-9439-1.

118. Klempíř J, Havránková P, Jech R. Terapie Parkinsonovy nemoci levodopou v kontinuální enterální infuzi. Neurol Prax 2015;16(2):84– 88.

119. Wirdefeldt K, Odin P, Nyholm D. Levodopa-Carbidopa Intestinal Gel in Patients with Parkinson’s dis­ease: A Systematic Review. CNS Drugs 2016;30(5):381– 404. doi: 10.1007/ s40263-016-0336-5.

120. Nyholm D, Nils­son Remahl AI, Dizdar N, et al. Duodenal levodopa infusion monother­apy vs oral polypharmacy in advanced Parkinson dis­ease. Neurology 2005;64(2):216– 23.

121. Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s dis­ease: a randomised, control­led, double-blind, double-dum­my study. Lancet Neurol 2014;13(2):141– 9. doi: 10.1016/ S1474-4422(13)70293-X.

122. Fernandez HH, Standaert DG, Hauser RA, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s dis­ease: final 12-month, open-label results. Mov Disord 2015;30(4):500– 9. doi: 10.1002/ mds.26123.

123. Antonini A, Yegin A, Preda C, et al. Global long-term study on motor and non-motor symp­toms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson’s dis­ease patients; 12-month interim outcomes. Parkinsonism Relat Disord 2015;21(3):231– 5. doi: 10.1016/ j.parkreldis.2014.12.012.

124. Fasano A, Ricciardi L, Lena F, et al. Intrajejunal levodopa infusion in advanced Parkinson’s dis­ease: long-term ef­fects on motor and non-motor symp­toms and impact on patient’s and caregiver’s quality of life. Eur Rev Med Pharmacol Sci 2012;16(1):79– 89.

125. Honig H, Antonini A, Martinez-Martin P, et al. Intrajejunal levodopa infusion in Parkinson’s dis­ease: a pilot multicenter study of ef­fects on nonmotor symp­toms and quality of life. Mov Disord 2009;24(10):1468– 75. doi: 10.1002/ mds.22596.

126. Martinez-Martin P, Reddy P, Katzenschlager R, et al. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s dis­ease. Mov Disord 2015;30(4):510– 6. doi: 10.1002/ mds.26067.

127. Todorova A, Samuel M, Brown RG, et al. Infusion ther­apies and development of impulse control disorders in advanced parkinson dis­ease: clinical experience after 3 years’ fol­low-up. Clin Neuropharmacol 2015;38(4):132– 4. doi: 10.1097/ WNF.0000000000000091.

128. Pickut BA, van der Linden C, Dethy S, et al. Intestinal levodopa infusion: the Belgian experience. Neurol Sci 2014;35(6):861– 6. doi: 10.1007/ s10072-013-1612-5.

129. Caceres-Redondo MT, Car­ril­lo F, Lama MJ, et al. Long-term levodopa/ carbidopa intestinal gel in advanced Parkinson’s dis­ease. J Neurol 2014;261(3):561– 9. doi: 10.1007/ s00415-013-7235-1.

130. Zibetti M, Merola A, Artusi CA, et al. Levodopa/carbidopa intestinal gel infusion in advanced Parkinson’s dis­ease: a 7- year experience. Eur J Neurol 2014;21(2):312– 8. doi: 10.1111/ ene.12309.

131. Lang AE, Rodriguez RL, Boyd JT, et al. Integrated safety of levodopa-carbidopa intestinal gel from prospective clinical trials. Mov Disord 2016;31(4):538– 46. doi: 10.1002/ mds.26485.

132. Epstein M, Johnson DA, Hawes R, et al. Long-Term PEG-J Tube Safety in Patients With Advanced Parkinson’s dis­ease. Clin Transl Gastroenterol 2016;7:e159. doi: 10.1038/ ctg.2016.19.

133. Mul­ler T, van Laar T, Cornblath DR, et al. Peripheral neuropathy in Parkinson’s dis­ease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord 2013;19(5):501– 7. doi: 10.1016/ j.parkreldis.2013.02.006.

134. Mancini F, Comi C, Oggioni GD, et al. Prevalence and features of peripheral neuropathy in Parkinson’s dis­ease patients under dif­ferent therapeutic regimens. Parkinsonism Relat Disord 2014;20(1):27– 31. doi: 10.1016/ j.parkreldis.2013.09.007.

135. Nyholm D, Jans­son R, Wil­lows T, et al. Long-term 24-hour duodenal infusion of levodopa: outcome and dose requirements. Neurology 2005;65(9):1506– 7.

136. Hagell P, Odin P, Sh­­ing M. Apomorphine in Parkinson’s dis­ease. Bremen: UNI-MED-Verlag 2008.

137. Pietz K, Hagell P, Odin P. Subcutaneous apomorphine in late stage Parkinson’s dis­ease: a long term fol­low up. J Neurol Neurosurg Psychiatry 1998;65(5):709– 16.

138. Stacy M, Silver D. Apomorphine for acute treatment of “of­f” episodes in Parkinson’s dis­ease. Parkinsonism Relat Disord 2008;14(2):85– 92.

139. Garcia-Ruiz PJ, Sesar Ignacio A, Ares Pensado B, et al. Ef­ficacy of long-term continuous apomorphine infusion in advanced Parkinson’s dis­ease with motor fluctuation: a multicenter study. Mov Disord 2008;23(8):1130– 6. doi: 10.1002/ mds.22063.

140. Martinez-Martin P, Reddy P, Antonini A, et al. Chronic subcutaneous infusion ther­apy with apomorphine in advanced Parkinson’s dis­ease compared to conventional ther­apy: a real life study of non motor ef­fect. J Parkinsons Dis 2011;1(2):197– 203. doi: 10.3233/ JPD-2011-11037.

141. Todorova A, Martinez-Martin P, Martin A, et al. Day­time apomorphine infusion combined with transdermal rotigotine patch ther­apy is tolerated at 2 years: a 24 hours treatment option in Parkinson’s dis­ease. Basal Ganglia 2013;3(2):127– 30.

142. Ribaric S. The pharmacological properties and therapeutic use of apomorphine. Molecules 2012;17(5):5289– 309. doi: 10.3390/ molecules17055289.

143. Ondo WG, Hunter C, Vuong KD, et al. The pharmacokinetic and clinical ef­fects of tolcapone on a single dose of sublingual apomorphine in Parkinson’s dis­ease. Parkinsonism Relat Disord 2000;6(4):237– 40.

144. Schwab RS, Amador LV, Lettvin JY. Apomorphine in Parkinson’s dis­ease. Trans Am Neurol As­soc 1951;56:251– 3.

145. Cotzias GC, Papavasiliou PS, Tolosa ES, et al. Treatment of Parkinson’s dis­ease with aporphines. Pos­sible role of growth hormone. N Engl J Med 1976;294(11):567– 72.

146. D’Costa DF, Abbott RJ, Pye IF, et al. The apomorphine test in parkinsonian syndromes. J Neurol Neurosurg Psychiatry 1991;54(10):870– 2.

147. Netsomboon K, Partenhauser A, Rohrer JD, et al. Preactivated thiomers for intranasal delivery of apomorphine: in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016;109:35– 42. doi: 10.1016/ j.ejpb.2016.09.004.

148. Hauser RA, Olanow CW, Dzyngel B, et al. Sublingual apomorphine (APL-130277) for the acute conversion of OFF to ON in Parkinson’s dis­ease. Mov Disord 2016;31(9):1366– 72. doi: 10.1002/ mds.26697.

149. LeWitt PA, Ondo WG, Van Lunen B, et al. Open-label study as­ses­sment of safety and adverse ef­fects of subcutaneous apomorphine injections in treat­­ing “of­f” episodes in advanced Parkinson dis­ease. Clin Neuropharmacol 2009;32(2):89– 93. doi: 10.1097/ WNF.0B013E31816D91F9.

150. Poewe W, Kleedorfer B, Gerstenbrandt F, et al. Subcutaneous apomorphine in Parkinson’s dis­ease. Lancet 1988;1(8591):943.

151. Pol­lak P, Champay AS, Gaio JM, et al. Subcutaneous administration of apomorphine in motor fluctuations in Parkinson’s dis­ease. Revue Neurol 1990;146(2):116– 22.

152. Borgemeester RW, Drent M, van Laar T. Motor and non-motor outcomes of continuous apomorphine infusion in 125 Parkinson’s dis­ease patients. Parkinsonism Relat Disord 2016;23:17–22. doi: 10.1016/ j.parkreldis.2015.11.013.

153. Dewey RBJ, Hutton JT, LeWitt PA, et al. A randomized, double-blind, placebo-control­led trial of subcutaneously injected apomorphine for parkinsonian of­f-state events. Arch Neurol 2001;58(9):1385– 92.

154. Antonini A, Isaias IU, Rodolfi G, et al. A 5-year prospective as­ses­sment of advanced Parkinson dis­ease patients treated with subcutaneous apomorphine infusion or deep brain stimulation. J Neurol 2011;258(4):579– 85. doi: 10.1007/ s00415-010-5793-z.

155. Drapier S, Eusebio­ A, Degos B, et al. Quality of life in Parkinson’s dis­ease improved by apomorphine pump: the OPTIPUMP cohort study. J Neurol 2016;263(6):1111– 9. doi: 10.1007/ s00415-016-8106-3.

156. Literature review intermittent subcutaneous apomorphine ther­apy in Parkinson’s dis­ease. Neurology 2004;62(6 Suppl 4):S12– 7.

157. Boyle A, Ondo WG. Apomorphine in the Treatment of Parkinson’s dis­ease. CNS Drugs 2015;29(2):83– 9. doi: 10.1007/ s40263-014-0221-z.

158. Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine ther­apy improves dyskinesias in Parkinson’s dis­ease: a prospective study us­­ing single-dose chal­lenges. Mov Disord 2005;20(2):151– 7.

159. Kaňovsky P, Kubova D, Bareš M, et al. L-DOPA Induced Dyskinesias and the Continuous Subcutaneous Infusions of Apomorphine –  Results of Two Years, Prospective Fol­low-Up. Mov Disord 2002;17:(1):188–91.

160. Kaňovský P, Kubová D, Bareš M, et al. Suppres­sion of L-DOPA induced dyskinesias in advanced Parkinson’s dis­ease by continuous subcutaneous infusions of apomorphine –  results of one year, prospective fol­low-up. Cesk Slov Neurol N 2002;65/ 98(1):9– 14.

161. Clarke CE, Worth P, Gros­set D, et al. Systematic review of apomorphine infusion, levodopa infusion and deep brain stimulation in advanced Parkinson’s dis­ease. Parkinsonism Relat Disord 2009;15(10):728– 41. doi: 10.1016/ j.parkreldis.2009.09.005.

162. Isaacson S, Ondo WG, Pagan F. Apomorphine Imp­roves Morn­­ing Akinesia in Parkinson’s Dis­ease: Interim Analysis of the AM-IMPAKT Trial (P7.072). Neurology 2014;82(10):68– 9.

163. Todorova A, Chaudhuri KR. Subcutaneous apomorphine and non-motor symp­toms in Parkinson’s dis­ease. Parkinsonism Relat Disord 2013;19(12):1073– 8. doi: 10.1016/ j.parkreldis.2013.08.012.

164. Fernandez-Pajarin G, Sesar A, Ares B, et al. Evaluat­­ing the Ef­ficacy of Nocturnal Continuous Subcutaneous Apomorphine Infusion in Sleep Disorders in Advanced Parkinson’s Dis­ease: The APO-NIGHT Study. J Parkinsons Dis 2016;6(4):787– 92.

165. Borgemeester RW, Lees AJ, van Laar T. Parkinson’s dis­ease, visual hal­lucinations and apomorphine: A review of the available evidence. Parkinsonism Relat Disord 2016;27:35– 40. doi: 10.1016/ j.parkreldis.2016.04.023.

166. Manson AJ, Hanagasi H, Turner K, et al. Intravenous apomorphine ther­apy in Parkinson’s dis­ease clinical and pharmacokinetic observations. Brain J Neurol 2001;124(4):331– 40.

167. LeWitt PA. Subcutaneously administered apomorphine: pharmacokinetics and metabolism. Neurology 2004;62(6 Suppl 4):S8– 11.

168. Tribl GG, Sycha T, Kotzailias N, et al. Apomorphine in idiopathic restless legs syndrome: an exploratory study. J Neurol Neurosurg Psychiatry 2005;76(2):181– 5.

169. Fridman EA, Krimchansky BZ, Bonetto M, et al. Continuous subcutaneous apomorphine for severe disorders of consciousness after traumatic brain injury. Brain Inj 2010;24(4):636– 41. doi: 10.3109/ 02699051003610433.

170. Himeno E, Ohyagi Y, Ma L, et al. Apomorphine treatment in Alzheimer mice promot­­ing amyloid-βdegradation. Ann Neurol 2011;69(2):248– 56. doi: 10.1002/ ana.22319.

171. Yarnall AJ, Lashley T, L­­ing H, et al. Apomorphine: A potential modifier of amyloid deposition in Parkinson’s dis­ease? Mov Disord 2016;31(5):668– 75. doi: 10.1002/ mds.26422.

172. Eggert K, Schrader C, Hahn M, et al. Continuous je­junal levodopa infusion in patients with advaced parkinson dis­ease: practical aspects and outcome of motor and non-motor complications. Clin Neuropharmacol 2008;31(3):151– 66. doi: 10.1097/ wnf.0b013e31814b113e.

173. Kempster PA, O’Sul­livan SS, Holton JL, et al. Relationships between age and late progres­sion of Parkinson’s dis­ease: a clinico-pathological study. Brain 2010;133(Pt 6):1755– 62. doi: 10.1093/ brain/ awq059.

174. Lundqvist C, Beiske AG, Reiertsen O, et al. Real life cost and quality of life as­sociated with continuous intraduodenal levodopa infusion compared with oral treatment in Parkinson patients. J Neurol 2014;261(12):2438– 45. doi: 10.1007/ s00415-014-7515-4.

175. Pietzsch JB, Garner AM, Marks WJJ. Cost-Ef­fectiveness of Deep Brain Stimulation for Advanced Parkinson’s Dis­ease in the United Stated. Neuromodulation 2016;19(7):689– 97. doi: 10.1111/ ner.12474.

Štítky
Paediatric neurology Neurosurgery Neurology

Článok vyšiel v časopise

Czech and Slovak Neurology and Neurosurgery

Číslo 5

2017 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#