Contact heat evoked potentials – impact of physiological variables
Authors:
J. Raputová 1,2; E. Vlčková 1,2; J. Kočica 1,2; T. Skutil 1; A. Rajdová 1,2; D. Kec 1,2; J. Bednařík 1,2
Authors place of work:
Neurologická klinika LF MU a FN Brno
1; CEITEC – Středoevropský technologický, institut, Brno
2
Published in the journal:
Cesk Slov Neurol N 2019; 82(1): 76-83
Category:
Original Paper
doi:
https://doi.org/10.14735/amcsnn201976
Summary
Introduction:
Contact heat evoked potentials (CHEPs) represent a new neurophysiological method of functional testing of small nerve fibers and the spinothalamic tracts. The study aimed to confirm the validity of published normal values for this method in the Czech population and to evaluate the influence of physiological and test-related variables on the CHEPs response.
Patients and methods:
Two groups were included in the study – a healthy control group (97 healthy volunteers; 53 women; age range 20–82 years) and a group of patients with diabetic distal sensorimotor polyneuropathy (DSPN group, 37 patients; 14 women; age range 29–77 years). In all of the participants, CHEPs were examined in the dorsum of the hand and above the ankle using basic and intensive temperature algorithm.
Results:
The CHEPs testing was mostly well-tolerated. The vast majority of the latencies and amplitudes of the CHEPs responses obtained in the healthy control group fell within the reference range according to the published normal values. Test-related variables showed also a highly significant impact on CHEPs values – the latencies were shorter in hands (compared to the calf) and whenever the intensive temperature algorithm was used (p < 0.001 in both cases). Women had significantly higher amplitudes and shorter latencies (p < 0.05). Older volunteers had significantly lower amplitudes (p < 0.05) than the younger ones. The DSPN group had longer latencies (p < 0.05) and lower amplitudes (p < 0.05) in comparison with control group.
Conclusion:
The study confirmed validity of published normal values for the Czech population. For precise evaluation of the results, physiological (gender, age) and test-related parameters (tested area, temperature algorithm) should be taken into account. On a group level, CHEPs proved to be a useful tool for small-nerve fiber dysfunction assessment in DSPN.
Key words:
somatosensory evoked potentials – small fi ber neuropathy – spinothalamic tract – neuropathic pain – reference values
The authors declare they have no potential confl icts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
接触热诱发电位-生理变量的影响
作品简介:
接触热诱发电位(CHEPs)是一种新的小神经纤维和脊髓丘脑束功能测试的神经生理学方法。本研究旨在验证捷克人群中已发表的该方法正常值的有效性,并评估生理和测试相关变量对CHEPs反应的影响。
患者和方法:
研究分为两组:健康对照组(97名健康志愿者;53岁的女性;年龄范围20-82岁)及一组糖尿病远端感觉运动神经病变患者(DSPN组,37例;14个女性;年龄29-77岁)。在所有的参与者中,CHEPs被检测在手背和脚踝以上使用一个基本的和密集的温度算法。
结果:
CHEP试验基本耐受。健康对照组获得的CHEP反应的绝大多数延迟和振幅都在参考范围内,这是根据公布的正常值得出的。与测试相关的变量对CHEP值也有非常显著的影响——与小腿相比,手部的延迟时间更短,而且无论何时使用强化温度算法(两种情况下p < 0.001)。女性患者的波幅明显增高,潜伏期明显缩短(p < 0.05)。老年志愿者的振幅明显低于年轻志愿者(p < 0.05)。与对照组相比,DSPN组延迟时间较长(p < 0.05),振幅较低(p < 0.05)。
结论:
该研究证实了捷克人公布的正常值的有效性。为了精确地评价结果,应考虑生理(性别、年龄)和测试相关参数(测试区域、温度算法)。在群体水平上,CHEPs被证明是诊断DSPN小神经纤维功能障碍的有效工具。
关键词:
体感诱发电位-小纤维神经病变-脊髓丘脑束-神经痛-参考值
Zdroje
1. Haanpää M, Attal N, Backonja M et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011; 152 (1): 14–27. doi: 10.1016/j.pain.2010.07.031.
2. Granovsky Y, Anand P, Nakae A et al. Normative data for A contact heat evoked potentials in adult population: a multicenter study. Pain 2016; 157 (5): 1156–1163. doi: 10.1097/j.pain.0000000000000495.
3. Cruccu G, Sommer C, Anand P et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol 2010; 17 (8): 1010–1018. doi: 10.1111/j.1468-1331.2010.02969.x.
4. Atherton DD, Facer P, Roberts KM et al. Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol 2007; 7: 21. doi: 10.1186/1471-2377-7-21.
5. Chao CC, Hsieh SC, Tseng MT et al. Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin Neurophysiol 2008; 119 (3): 653–661. doi: 10.1016/j.clinph.2007.11. 043.
6. Wong MC, Chung JW. Feasibility of contact heat evoked potentials for detection of diabetic neuropathy. Muscle Nerve 2011; 44 (6): 902–906. doi: 10.1002/mus.22192.
7. Ulrich A, Haefeli J, Blum J et al. Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology 2013; 80 (15): 1393–1399. doi: 10.1212/WNL.0b013e31828c2ed1.
8. Kramer JL, Haefeli J, Curt A et al. Increased baseline temperature improves the acquisition of contact heat evoked potentials after spinal cord injury. Clin Neurophysiol 2012; 123 (3): 582–589. doi: 10.1016/j.clinph.2011.08.013.
9. Chen AC, Niddam DM, Arendt-Nielsen L. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci Lett 2001; 316 (2): 79–82.
10. Wydenkeller S, Wirz R, Halder P. Spinothalamic tract conduction velocity estimated using contact heat evoked potentials: what needs to be considered. Clin Neurophysiol 2008; 119 (4): 812–821. doi: 10.1016/j.clinph.2007.12.007.
11. Jutzeler CR, Rosner J, Rinert J et al. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes. Sci Rep 2016; 6: 34660. doi: 10.1038/srep34660.
12. Baumgärtner U, Greffrath W, Treede RD. Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and limitations for basic science and clinical use. Neurophysiol Clin 2012; 42 (5): 267–280. doi: 10.1016/j.neucli. 2012.06.002.
13. Lagerburg V, Bakkers M, Bouwhuis A et al. Contact heat evoked potentials: normal values and use in small-fiber neuropathy. Muscle Nerve 2015; 51 (5): 743–749. doi: 10.1002/mus.24465.
14. Rosner J, Hubli M, Hostettler P et al. Contact heat evoked potentials: Reliable acquisition from lower extremities. Clin Neurophysiol 2018; 129 (3): 584–591. doi: 10.1016/j.clinph.2017.12.034.
15. Tesfaye S, Boulton AJ, Dyck PJ et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33 (10): 2285–2293. doi: 10.2337/ dc10-1303.
16. Jutzeler CR, Ulrich A, Huber B et al. Improved diagnosis of cervical spondylotic myelopathy with contact heat evoked potentials. J Neurotrauma 2017; 34 (12) : 2045–2053. doi: 10.1089/neu.2016.4891.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2019 Číslo 1
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
Najčítanejšie v tomto čísle
- Mild traumatic brain injury management – consensus statement of the Czech Neurological Society CMS JEP
- Chronic subdural haematoma
- Oligoclonal IgG and free light chains – comparison between agarose and polyacrylamide isoelectric focusing
- Ketogenic diet – effective treatment of childhood and adolescent epilepsies