Sub signum coma – current view of chronic disorders of consciousness
Authors:
A. Škutchanová 1; E. Kantorová 2; E. Kurča 2
Authors place of work:
Klinika intenzívnej medicíny a anesteziológie JLF UK a UN Martin
1; Neurologická klinika JLF UK a UN Martin
2
Published in the journal:
Cesk Slov Neurol N 2019; 82(1): 19-24
Category:
Review Article
doi:
https://doi.org/10.14735/amcsnn201919
Summary
Chronic disorders of consciousness are a modern phenomenon. Recognising first behavioural signs of contact with the patient‘s environment after coma plays a key role in the patient`s access to extended treatment and rehabilitation, as well as in establishing an effective contact with the environment; it is also considered to be an important prognostic sign. Current western terms in comparison with traditional definition of apallic syndrome or the term coma vigile are more descriptive and precise. In recent years, new methods of assessment, which enable more exact evaluation of brain disorders were established. However, most of them remain experimental and lack clinical availability, which favours clinical testing using daily objects. Behavioural response assessment is the standard to compare results obtained with other methods of assessment. In our work, we present our view on our perception of a patient with a disorder of consciousness and an overview of current options in identifying the underlying organic substrate.
Key words:
chronic disorders of consciousness – state of minimal consciousness – vegetative state – wakefulness without answering – WS/UWS – MCS – apallic syndrome – coma vigile – diagnostics – behavioural correlate – examination methods
The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.
The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
Zdroje
1. Tononi G, Koch C. The neual corelates of consciousnes. Ann N Y Acad Sci 2008; 1124: 239– 261. doi: 10.1196/ annals.1440.004.
2. Sarasso S, Boly M. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol 2015; 25(23): 3099– 3105.
3. Ambler Z. Základy neurologie. Praha: Galén 2011.
4. Schiff ND, Nauvel T, Victor J. Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol 2014; 25: 7– 14. doi: 10.1016/ j.conb.2013.10.007.
5. Fischgold H, Mathis P, Fischgold H. Obnubilations, comas et stupeurs. Supplement 11. Electroencephalography and clinical neurophysiology. Paris: Masson et Cie 1959.
6. Jennet B, Plum F. Persistent vegetative state after brain damage. A syndrome in search for a name. Lancet 1972; 1(7753): 734– 737.
7. Kretschmer E. Das apallische syndrom. Z ges. Neurol Psychiat 1940; 169: 576-579.
8. Laureys S, Perrin F, Schankers et al. Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 2005; 18(6): 726– 733.
9. Multi-society task on PVS. Medical aspect of the persistent vegetative state (1). N Eng J Med 1994; 330(21): 1499– 1508. doi: 10.1056/ NEJM199405263302107.
10. Giacino J, Ashwal S, Childs N et al. The minimally conscious state: definition and diagnostic criteria. Neurology 2002; 58(3): 349– 353.
11. Laureys S, Celesia GG, Cohadon F et al. Unresponsive wakefullness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 2010; 8: 68. doi: 10.1186/ 1741-7015-8-68.
12. Gosseries O. Disorders of consciousness: coma, vegetative and minimally conscious states. In: Cvetkovic D, Cosic I (eds). States of consciousness. The Frontiers Collection, Springer: Berlin, Heidelberg 2011: 29– 55.
13. Lippert-Grüner M, Angerová Y, Hralová M et al. Pacient ve vegetativním stavu a jeho rehabilitace. Cesk Slov Neurol N 2011; 74/ 107(3): 279– 284.
14. Fins JJ, Schiff ND, Foley KM. Late recovery from the minimally conscious state: ethical and policy implications. Neurology 2007; 68(4): 304– 307. doi: 10.1212/ 01.wnl.0000252376.43779.96.
15. Estraneo A, Moretta P, Cardinale V et al. A multicentre study of intentional behavioural responses measured using the Coma Recovery Scale – Revised in patients with minimally conscious state. Clin Rehabil 2015; 29(8): 803– 808. doi: 10.1177/ 0269215514556002.
16. Cruse D, Fattizzo M, Owen AM et al. Why use a mirror to assess visual pursuit in prolonged disorders of consciousness? Evidence from healthy control participants. BMC Neurol 2017; 17(1): 14. doi: 10.1186/ s12883-017-0798-1.
17. Giacino J, Kalmar K. Coma Recovery State – revised, administration and scoring design. [online]. Dostupné z URL: http:/ / www.tbims.org/ combi/ crs/ CRS%20Syllabus.pdf .
18. Leon-Carrion J, Van Eeckhout P, Dominguez-Morales MDR. Review of subject: the locked-in syndrome: a syndrome looking for a therapy. Brain Inj 2002; 16: 555– 569.
19. Gerstenbrand F. Das traumatische Apallische Syndrom. Wien, New York: Springer 1967.
20. Vanhaudenhuyse A, Noirhomme Q, TshibandaLJ et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133(Pt 1): 161– 171. doi: 10.1093/ brain/ awp313.
21. Kirsch M, Guldenmund P, Ali Bahri M et al. Sedation of patients with disorders of consciousness during neuroimaging: effects on resting state functional brain connectivity. Anesth Analg 2017; 124(2): 588– 598. doi: 10.1213/ ANE.0000000000001721.
22. Kampfl A, Schmutzhard E, Franz G et al. Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. Lancet 1998; 351(9118): 1763– 1767. doi: 10.1016/ S0140-6736(97)10301-4.
23. Boly M, Garrido MI, Gosseries O et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science 2011; 332(6031): 858– 862. doi: 10.1126/ science.1202043.
24. DiPerri C, Bahri MA, Amico E et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. Lancet Neurol 2016: 15(8): 830– 842. doi: 10.1016/ S1474-4422(16)00111-3.
25. Thibaut A, Bruno MA, Chatelle C et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J Rehabil Med 2012; 44(6): 487– 494. doi: 10.2340/ 16501977-0940.
26. Casali AG, Gosseries O, Rosanova M et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 2013; 5(198): 198ra105. doi: 10.1126/ scitranslmed.3006294.
27. Di Perri C, Bastianello S, Bartsch AJ et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013; 81(16): 1417– 1424. doi: 10.1212/ WNL.0b013e 3182a43b78.
28. Aruab J, Bachmann T, Singer W et al. Distilling the neural correlates of consciousness. Neurosci Biobehav Rev 2012; 36(2): 737– 746. doi: 10.1016/ j.neubiorev.2011.12.003.
29. Boly M, Faymonville ME, Schnakers C et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol 2008; 7(11): 1013– 1020. doi: 10.1016/ S1474-4422(08)70219-9.
30. Di HB, Yu SM, Weng XC et al. Cerebral response to patient’s own name in the vegetative and minimally conscious states. Neurology 2007; 68(12): 895– 899. doi: 10.1212/ 01.wnl.0000258544.79024.d0.
31. Doušek F. Hejno bez ptáků. Toito 2012.
Štítky
Paediatric neurology Neurosurgery NeurologyČlánok vyšiel v časopise
Czech and Slovak Neurology and Neurosurgery
2019 Číslo 1
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Mild traumatic brain injury management – consensus statement of the Czech Neurological Society CMS JEP
- Chronic subdural haematoma
- Oligoclonal IgG and free light chains – comparison between agarose and polyacrylamide isoelectric focusing
- Ketogenic diet – effective treatment of childhood and adolescent epilepsies