#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Separation of amino acid enantiomers by high performance liquid chromatography


Authors: Jakub Moravčík;  Katarína Hroboňová
Authors place of work: Slovenská technická univerzita v Bratislave
Published in the journal: Čes. slov. Farm., 2014; 63, 4-12
Category: Review Articles

Summary

Enantiomeric forms of the target analytes can be separated using chiral stationary phases based on cyclodextrins, macrocyclic polyethers and antibiotics, and derivatized polysaccharides and cyclofructans. The polar-organic, reverse-phase and normal-phase separation system of the mobile phase can be used for chromatographic separation of racemic mixtures of amino acids, depending on the type of the chiral stationary phase. In addition to the direct method of separation, the possibility of derivatization with a chiral derivatization agent is used. The conventional detection techniques, circular dichroism and laser polarimetry detection can be used to detect amino acids after HPLC separation.

Keywords:
amino acids, enantiomers, chiral separations, high performance liquid chromatography


Zdroje

1. Škárka B.; Ferenčík M. Biochémia. Bratislava: Alfa 1992.

2. Ilisz I., Aranyi A., Pataj Z., Péter A. Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds. A review. J. Pharm. Biomed. Anal. 2012; 69, 28–41.

3. Lehotay J. Separačné metódy v analytickej chémii, 1. vyd. Bratislava: Nakladateľstvo STU 2009.

4. Štulík K. Analytické separační metody, 1. vyd. Praha: Karolinium 2004.

5. Davankon V. A., Rogozhin S. V. Ligand chromatography as a novel method for the investigation of mixed complex: stereoselective effects in α-amino acids copper(II) cpmplexes. J. Chromatogr. 1971; 60, 280–283.

6. Contino A., Maccarrone G., Remelli M. Exploiting thermodynamic data to optimize the enantioseparation of underivatized amino acids in ligand exchange capillary electrophoresis. Anal. Bioanal. Chem. 2013; 405, 951–959.

7. Subramanian G. Chiral separation techniques. A practical approach, 2nd Edition. Weinheim: Wiley-VCH 2000.

8. Molovenau C. S., David V. Essentials in modern HPLC separations. 2nd Edition. USA: Elsevier 2013; 550.

9. Guillarme D., Bonvin G., Badoud F., Schappler J., Rudaz S., Veuthey J. L. Fast chiral separation of drugs using columns packed with sub-2 μμm particles and ultra high pressure. Chirality 2010; 22, 320–330.

10. Bhushan R., Tanwar S. Indirect resolution of enantiomers of certain D,L-amino acids by liquid chromatography via diastereomer formation with Marfey’s reagent and its leucine variant. Proc. Nat. Acad. Sci. 2009; 79, 241–251.

11. Bhushan R., Kumar V. Analysis of multicomponent mixture and simultaneous enantioresolution of proteinogenic and non-proteinogenic amino acids by reversed-phase high performance liquid chromatography using chiral variants of Sanger’s reagent. Anal. Biomed. Chem. 2009; 394, 1697–1705.

12. Bhushan R., Kumar V. Indirect enantioseparation of α-amino acids by reversed-phase liquid chromatography using new chiral derivatizing reagents synthesized from s-triazine chloride. J. Chromatogr. A 2008; 1201, 35–42.

13. Nimuta N., Fujiwara T., Watanabe A., Sekine M., Furuchi T., Yohda M., Yamagishi A., Oshima T., Homma H. A novel chiral thiol reagent for automated precolumn derivatization and high performance liquid chromatographic enantioseparation of amino acids and its application to the aspartate racemase assay. Anal. Biochem. 2003; 315, 262–269.

14. Guranda D. T., Kudryavtsev P. A., Khimiuk A. Y., Svedas V. K. Efficient enantiomeric analysis of primary amines and amino alcohols by high performance liquid chromatography with precolumn derivatization using novel chiral SH-reagent N-(R)-mandenyl-(S)-cysteine. J. Chromatogr. A 2005; 1095, 89–93.

15. Chernobrovkin M. G., Shapovalova E. N., Guranda D. T., Kudryavtsev P. A., Svedas V. K., Shpigun O. A. Chiral high performance liquid chromatography analysis of αα-amino acid mixtures using a novel chiral SH-reagent N-(R)-mandenyl-L-cysteine and traditional enantiomeric thiols for precolumn derivatization. J. Chromatogr. A 2007; 1175, 89–95.

16. Francotte E., Lindner W. Chirality in drug research. 1st Edition. Weinheim: Wiley-VCH 2006; 351.

17. Ilisz I., Tourwe D., Armstrong D. W., Peter A. High-performance liquid chromatographic enantioseparation of unusual secondary amino acids on a D-penicillamine – based chiral ligand-exchange column. Chirality 2006; 18, 539–543.

18. Lämmerhofer M. Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J. Chromatogr. A 2009; 1217, 814–856.

19. Choi H. J., Hyun M. H. Liquid chromatographic chiral separations by crown ether – based chiral stationary phases. J. Liq. Chromatogr. Rel. Technol. 2007; 30, 853–875.

20. Hyun M. H., Choi H. J., Kang B. S., Tan G., Cho Y. J. Preparation of a new chiral stationary phase based on (2S, 3S)-O,O´-bis-(10-undecenoyl)-N,N´-bis-(3,5-dinitrobenzoyl)-2,3-diamino-1,4-butandiol and its application for the liquid chromatographic resolution of enantiomers. Bull. Kor. Chem. Soc. 2006; 27, 1775–1779.

21. Chen J. J., Zhang D. T., Shen B. C., Zhang X. J., Xu B. J., Xu X. Z. Enantioseparation of D,L-αα-amino acids on crown ether chiral stationary phases. Chin. J. Anal. Chem. 2006; 34, 1535–1540.

22. Ilisz I., Berkecz R., Peter A. HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic – based chiral stationary phases. A review. J. Sep. Sci. 2006; 29, 1305–1321.

23. Ilisz I., Berkecz R., Peter A. Retention mechanism of high performance liquid chromatographic enantioseparation on macrocyclic glycopeptide – based chiral stationary phases. J. Chromatogr. A 2009; 1216, 1845–1860.

24. Winkler M., Klempier N. Enantioseparation of nonproteinogenic amino acids. Anal. Biomed. Chem. 2009; 393, 1789–1796.

25. Qiu H., Loukotkova L., Tesařova E., Bosakova Z., Armstrong D. W. Cyclofructan 6 based stationary phases for hydrophilic interaction liquid chromatography. J. Chromatogr. A 2011; 1218, 270–279.

26. Sun P., Armstrong D. W. Effective enantiomeric separations of racemic primary amines by the isopropyl carbamate – cyclofructan 6 chiral stationary phase. J. Chromatogr. A 2010; 1217, 4904–4918.

27. Ilisz I., Berkecz R., Forro E., Fülöp F., Armstrong D. W., Peter A. The role of π-acidic and π-basic chiral stationary phases in the high performance liquid chromatographic enantioseparation of unusual βα-amino acids. Chirality 2009; 21, 339–348.

28. Wang Y., Ong T. T., Li L. S., Tan T. T. Y. Enantioseparation of a novel “clickchemistry“ derived native ββ-cyclodextrin chiral stationary phase for high performance liquid chromatography. J. Chromatogr. A 2009; 1216, 2388–2393.

29. Remsburg J. W., Armstrong D. W., Peter A., Toth G. LC enantiomeric separation of unusual amino acids using cyclodextrin – based stationary phases. J. Liq. Chromatogr. Rel. Technol. 2008; 31, 219–230.

30. Wang Y., Young D. J., Tan T. T. Y. Click preparation of hindered cyclodextrin chiral stationary phases and their efficient resolution in high performance liquid chromatography. J. Chromatogr. A 2010; 1217, 7878–7883.

31. Berkecz R., Sztojkov-Ivanov A., Ilisz I., Forro E., Fülöp F., Hyun M. H., Peter A. High performance liquid chromatographic enantioseparation of ββ-amino acid stereoisomers on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid – based chiral stationary phase. J. Chromatogr. A 2006; 1125, 138–143.

32. Choi H. J., Ha H. J., Han S. C., Hyun M. H. Liquid chromatographic resolution of ββ-amino acids on CSPs based on optically active (3,3´-diphenyl-1,1´-binaphtyl)-20-crown-6. Anal. Chim. Acta 2008; 619, 122–128.

33. Hirose K., Jin Y. Z., Nakamura T., Nishioka R., Ueshige T., Tobe Y. Preparation and evaluation of a chiral stationary phase covalently bound with chiral pseudo-18-crown-6 ether having 1-phenyl-1,2-cyclohexanediol as a chiral unit. J. Chromatogr. A 2005; 1078, 35–41.

34. Hirose K., Jin Y. Z., Nakamura T., Nishioka R., Ueshige T., Tobe Y. Chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether for enantiomeric separation of amino compounds using a normal mobile phase. Chirality 2005; 17, 142–148.

35. Boesten J. M. M., Berkheij M., Schoemaker H. E., Hiemstra H., Duchateau A. L. L. Enantioselective high performance liquid chromatographic separation of N-methyloxycarbonyl unsaturated amino acids on macrocyclic glycopeptide stationary phases. J. Chromatogr. A 2006; 1108, 26–30.

36. Chen S. The enantioseparation of amino acids on a teicoplanin chiral stationary phase using non – aqueous mobile phases after pre-column derivatization with sulfur-containing reagents: the considerations of mobile phase composition and analyte structure variation on resolution enhancement. Biomed. Chromatogr. 2006; 20, 718–728.

37. Xiao T. L., Tesařová E., Anderson J. L., Egger M., Armstrong D. W. Evaluation and comparison of a methylated teicoplanin aglycone to teicoplanin aglycon and natural teicoplanin chiral stationary phases. J. Sep. Sci. 2006; 29, 429–445.

38. Lee K. A., Yeo S., Kim K. H., Lee W., Kang J. S. Enantioseparation of N-fluorenylmethoxycarbonyl α-amino acids on polysacharide – derived chiral stationary phases by reverse mode liquid chromatography. J. Pharm. Biomed. Anal. 2008; 46, 914–919.

39. Agrafiotou P., Sotiropoulos S., Pappa-Louisi A. Direct RP-HPLC determination of underivatized amino acids with online dual UV absorbance, fluorescence, and multiple electrochemical detection. J. Sep. Sci. 2009; 32, 949–954.

40. Barrett C. G. Elmore T. D. Amino acids and peptides. 1st Edition. USA, Cambridge: University Press 1998.

41. Šlechtová T., Kalíková K., Tesařová E. Stanovení enantiomerů theaninu pomocí HPLC, porovnání metod detekce. Chem. Listy 2013; 107, 228–232.

42. Siangproh W., Leesutthipornchai W., Dungchai W., Chailapakul O. Electrochemical detection for flow-based system. A Review. J. Flow Injection Anal. 2009; 26, 5–25.

43. Lucena R., Cardenas S., Valcarcel M. Evaporative light scattering detection: trends in its analytical uses. Anal. Bioanal. Chem. 2007; 388, 1663–1672.

44. Petritis K., Elfakir C., Dreux M. HPLC-CLND for the analysis of underivatized amino acids. LC-GC Europe 2001; 14, 389–395.

45. Armastong M., Jonscher K., Reisdorph N. A. Analysis of 25 underivatized amino acids in human plasma using ion-pairing reversed-phase liquid chromatography/time-of-flight-mass spectrometry. Rapid Commun. Mass Spectrom. 2007; 21, 2717–2726.

46. Ranjbar B., Gill P. Circular dichroism techniques. Biomolecular and nanostructural analyses. A Review. Chem. Biol. Drug Des. 2009; 74, 101–120.

47. Görög S. Identification and determination of impurities in drugs. 1st Edition. The Netherlands: Elsevier 2000; 772.

48. Ng K., Edkins T. J., Bobbitt D. R. Direct specific rotation measurements of amino acids, dipeptides, and tripeptides by laser-based polarimetry. Chirality 1999; 11, 187–194.

49. Petritis K, Elfakir C, Dreux M. A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J. Chromatogr. A 2002; 961, 9–21.

50. Sato K, Jin JY, Takeuchi T, Miwa T, Takekoshi Y, Kanno S, Kawase S. Indirect amperometric detection of underivatized amino acids in microcolumn liquid chromatography with carbon film based ring-disk electrodes. Analyst 2000; 125, 1041–1043.

51. Kott L., Holzheuer W. B., Wong and M. M., Webster G. K. An evaluation of four commercial HPLC chiral detectors: A comparison of three polarimeters and a circular dichroism detector. J. Pharm. Biomed. Anal. 2007; 43, 57–65.

Štítky
Pharmacy Clinical pharmacology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#