Study of local anaesthetics: Part 204*
Determination of critical micelle concentrations of selected derivatives of pyrrolidino-m-alkoxyphenylcarbamic acid using pyrene as a probe
Authors:
Jana Gališinová; Fils Andriamainty; Jozef Čižmárik; Eva Kontseková; Ivan Malík
Authors place of work:
Univerzita Komenského v Bratislave
Published in the journal:
Čes. slov. Farm., 2014; 63, 22-25
Category:
Original Articles
*Časť 203: J. Bioequiv. Availab. 2013; 5(4), 161–164.
Summary
The critical micelle concentrations of the studied derivatives of pyrrolidino-m-alkoxyphenylcarbamic acid in aqueous media at 25 °C were determined using the UV/VIS absorption spectroscopy method with pyrene as a probe. In the absorption spectra of the derivatives and pyrene, there were examined unmasked pyrene peaks, at wavelength of 336 and 320 nm for VIII Z, XIV Z and XVII Z, and in addition at 308 nm for XXIX Z. The critical micelle concentrations were defined from the plots of the sum of the unmasked pyrene peaks against the surfactant concentration that had a sigmoidal character of Boltzmann type. The cmc values of the derivatives were exponentially dependent on the number of carbons in the hydrophobic chain. From the plot of ln (cmc) against the number of carbons n with the equation ln (cmc) = –0.146–0.691n, the value of the Gibbs free energy of transfer of each methylene group of the alkoxychain from the aqueous phase into the internal hydrophobic volume of micelle was also defined: δΔG(CH2) = (–0.691 ± 0.023)RT. Building on the obtained results, the spherical micelle forming in the solution can be assumed.
Keywords:
derivatives of pyrrolidino-m-alkoxyphenylcarbamic acid, critical micelle concentration, pyrene absorption, sigmoidal-Boltzmann equation
Zdroje
1. Chevalier Y., Zemb T. The structure of micelles and microemulsions. Rep. Prog. Phys. 1990; 53, 279.
2. Puvvada S., Blankschtein D. Molecular thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants. J. Chem. Phys. 1990; 92, 3710–3724.
3. Rosen M. J. Surfactants and Interfacial Phenomena. 3. vyd. Hoboken: John Wiley & Sons, Inc. 2004.
4. Zakharova L. Y., Gaysin N. K., Gnezdilov O. I., Bashirov F. I., Kashapov R. R., Zhiltsova E. P., Pashirova T. N., Lukashenko S. S. Micellization of alkylated 1,4-diazabicyclo[2,2,2]octane by nuclear magnetic resonance technique using pulsed gradient of static magnetic field. J. Mol. Liq. 2012; 167, 89–93.
5. Nyuta K., Yoshimura T., Esumi K. Surface tension and micellization properties of heterogemini surfactants containing quaternary ammonium salt and sulfobetaine moiety. J. Colloid Interface Sci. 2006; 301, 267–273.
6. Sajid A. M., Abdul R. M., Khan F., Al-Lohedan H. A, Kabir-ud-Din. Interaction of amphiphilic drug amitriptyline hydrochloride with β-cyclodextrin as studied by conductometry, surface tensiometry and viscometry. J. Mol. Liq. 2012; 167, 115–118.
7. Bai G., Lopes A., Bastos M. Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J. Chem. Thermodyn. 2008; 40, 1509–1516.
8. Moulik, S. P., Mitra, D. Amphiphile self-aggregation: an attempt to reconcile the agreement-disagreement between the enthalpies of micellization determined by the van’t Hoff and Calorimetry methods. J. Colloid Interface Sci. 2009; 337, 569–578.
9. Sarac B., Bester-Rogac M. Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J. Colloid Interface Sci. 2009; 338, 216–221.
10. Das D., Ismail K. Aggregation and adsorption properties of sodium dodecyl sulfate in water-acetamide mixtures. J. Colloid Interface Sci. 2008; 327, 198–203.
11. Javadian S., Gharibi H., Sohrabi B., Bijanzadeh H., Safarpour M. A., Behjatmanesh-Ardakanid R. Determination of the physico-chemical parameters and aggregation number of surfactant in micelles in binary alcohol-water mixtures. J. Mol. Liq. 2008; 137, 74–79.
12. Dong B., Zhao X., Zheng L., Zhang J., Li N., Inoue T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment. Colloids Surf. A: Physicochem. Engin. Asp. 2008; 317, 666–672.
13. Basu Ray G., Chakraborty I., Moulik S. P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 2006; 294, 248–254.
14. Aguiar J., Carpena P., Molina-Bolívar J. A., Carnero Ruiz C. J. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003; 258, 116–122.
15. Vullev V. I., Jiang H., Jones G. Excimer sensing. In: Topics in fluorescence spectroscopy. vol. 10. advanced concepts in fluorescence spectroscopy. Part B: Macromolecular sensing. New York: Springer Science + Business Media, Inc. 2005; 211–231.
16. Moroi Y. Micelles. Theoretical and applied aspects. New York: Plenum Press 1992.
17. Čižmárik J., Polášek E., Švec P., Račanská E. Štúdium lokálnych anestetík CX.: Príprava, aktivita a rozdeľovacie koeficienty pyrolidínoetylesterov 2-, 3- a 4-alkoxy-substituovaných kyselín fenylkarbámových. Čes. slov. Farm. 1993; 42, 88–91.
18. Barbero N., Quagliotto P., Barolo C., Artuso E., Buscaino R., Viscardi G. Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Part 2. Dyes Pigm. 2009; 83, 396–402.
19. Andriamainty F., Čižmárik J., Uhríková D., Balgavý P. Study of local anesthetics. Part 168. Critical micelle concentration of alkoxy homologs of local anesthetic heptacainium chloride determined by ion selective electrode. Sci. Pharm. 2005; 73, 17–25.
20. Silvério S. C., Rodríguez O., Teixeira J. A., Macedo E. A. Gibbs free energy of transfer of a methylene group on {UCON + (sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects. J. Chem. Thermodyn. 2010; 42, 1063–1069.
21. Čižmárik J., Andriamainty F., Malík I., Sedlárová E. Štúdium lokálnych anestetík. Časť 178. Micelizácia pyrolidínoetylesterov 2-alkoxysubstituovanej kyseliny fenylkarbámovej. Farm. Obzor 2007; 76, 263–267.
22. Andriamainty F., Čižmárik J., Malík I. Štúdium lokálnych anestetík. Časť 190. Micelizácie a termodynamické parametre N-[2-(2-heptyloxyfenylkarbamoyloxy)-etyl]-pyrolidíniumchloridu vo vodnom roztoku KF. Farm. Obzor 2009; 78, 129–133.
Štítky
Pharmacy Clinical pharmacologyČlánok vyšiel v časopise
Czech and Slovak Pharmacy
2014 Číslo 1
Najčítanejšie v tomto čísle
- Separation of amino acid enantiomers by high performance liquid chromatography
- Identifying and solving drug-related problems in terms of the community pharmacist
- Globalization and its impact on pharmacy services in the Slovak Republic
- Inhibition of 12/15 lipoxygenase by curcumin and an extract from Curcuma longa L.