Stručný pohľad na vlastnosti in silico, vzťahy štruktúra– –aktivita a biotransformáciu fruquintinibu, protinádorovo účinkujúceho liečiva novej generácie obsahujúceho privilegované benzofuránové zoskupenie
Autori:
Dominika Nádaská 1; Lucia Hudecova 2; Gustáv Kováč 2; Ivan Malík 1,2
Pôsobisko autorov:
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
1; Institute of Chemistry, Clinical Biochemistry and Laboratory Medicine Faculty of Medicine, Slovak Medical University in Bratislava, Slovak Republic
2
Vyšlo v časopise:
Čes. slov. Farm., 2023; 72, 267-276
Kategória:
Review Articles
doi:
https://doi.org/10.5817/CSF2023-6-267
Súhrn
Súčasné trendy projekcie liečiv významne reflektujú tzv. privilegované zoskupenia ako základné (tzv. jadrové) štruktúrne fragmenty s rozhodujúcim vplyvom na afinitu k vhodne zvoleným biologickým cieľom, účinok, selektivitu aj toxikologické charakteristiky týchto liečiv a perspektívnych kandidátov na liečivá. Fruquintinib (1) je nový syntetický selektívny inhibítor izoforiem receptora vaskulárneho endotelového rastového faktora (z angl. vascular endothelial growth factor receptor; VEGFR), t. j. VEGFR-1, VEGFR-2 a VEGFR-3. Terapeutikum (1) obsahuje planárne bicyklické heteroaromatické jadro, v ktorom sú vhodne inkorporované dva atómy dusíka, základný (jadrový) bicyklický heteroaromatický kruh – privilegované (substituované) benzofuránové zoskupenie a skupinu pôsobiacu ako donor a akceptor väzby vodíkovým mostíkom (VVM), t. j. amidové funkčné zoskupenie. Fruquintinib (1) bol prvýkrát schválený v Číne pre liečbu metastázujúceho kolorektálneho karcinómu, závažného nádorového ochorenia s vysokou mortalitou. Táto prehľadová publikácia ponúkla stručný pohľad na tému privilegovaných štruktúr, ich niekoľkých parametrov, ktorých rozsah približuje tzv. liečivu podobné (drug-like) vlastnosti, farmakodynamické charakteristiky fruquintinibu (1) a rôzne in silico-deskriptory definujúce štruktúrne a fyzikálno-chemické vlastnosti tohto liečiva (molekulová hmotnosť, počet ťažkých atómov, počet aromatických tažkých atómov, frakcia C-atómov v sp3-hybridizovanom stave, počet akceptorov VVM, počet donorov VVM, celkový polárny povrch, molekulová refrakcia, molekulový objem aj parametre lipofility a rozpustnosti). Niektoré z týchto deskriptorov súviseli s farmakokinetikou aj distribúciou fruquintinibu (1) a navyše by mohli pomôcť predikovať jeho schopnosť pasívne prechádzať hematoencefalickou bariérou (HEB). V publikácii sa hodnotila aj eventuálna súvislosť medzi indukčným potenciálom liečiva (1) voči izoenzýmom cytochrómu P450 (CYP1A2 a CYP3A4) a jeho pasívnym transportom do centrálneho nervového systému via HEB. Stručne boli takisto načrtnuté súčasné klinické skúsenosti s fruquintinibom (1) a budúce liečebné možnosti tohto terapeutika.
Klíčová slova:
privilegované zoskupenie – fruquinti- nib – vlastnosti in silico – vzťahy štuktúra–aktivita – far- makokinetika
Zdroje
- Zhao H., Dietrich J. Privileged scaffolds in lead generation. Expert Opin. Drug. Discov. 2015; 10, 781–790. doi:10.1517/17460441.2015.1041496
- Evans B. E., Rittle K. E., Bock M. G., DiPardo R. M., Freidinger R. M., Whitter W. L., Lundell G. F., Veber D. F., Anderson P. S., Chang R. S. L., Lotti V. J., Cerino D. J., Chen T. B., Kling P. J., Kunkel K. A., Springer J. P., Hirshfield J. Methods for drug discovery: development of potent,selective, orally effective cholecystin antagonists. J. Med. Chem. 1988; 31, 2235–2246. doi: 10.1021/ jm00120a002
- Kourounakis A. P., Xanthopoulos D., Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 2020; 40, 709–752. doi: 10.1002/med.21634
- Datusalia A. K., Khatik G. L. Thiazole heterocycle: A privileged scaffold for drug design and discovery. Curr. Drug Discov. Technol.2018; 15, 162. doi: 10.2174/157016381503180620153423
- Gharat R., Prabhu A., Khambete M. P. Potential of triazines in Alzheimer’s disease: A versatile privileged scaffold. Arch. Pharm. (Weinheim) 2022; 355, art. no. e2100388 (12 pp.). doi: 10.1002/ardp.202100388
- Maclean D., Baldwin J. J., Ivanov V. T., Kato Y., Shaw A., Schenider P., Gordon E. M. Glossary of terms used in combinatorial chemistry (technical report). J. Comb. Chem. 2000; 2, 562–578. doi: 10.1021/cc000071u
- Horton D. A., Bourne G. T., Smythe M. L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures.Chem. Rev. 2003; 103, 893–930. doi: 10.1021/cr020033s
- Costantino L., Barlocco D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem. 2006; 13, 6585. doi: 10.2174/092986706775197999
- Rusinov V. L., Charushin V. N., Chupakhin O. N. Biologically active azolo-1,2,4-triazines and azolopyrimidines. Russ. Chem. Bull. 2018; 67, 573–599. doi: 10.1007/ s11172-018-2113-8
- Voinkov E. K., Drokin R. A., Fedotov V. V., Butorin I. I., Savateev K. V., Lyapustin D. N., Gazizov D. A., Gorbunov E. B., Slepukhin P. A., Gerasimova N. A., Evstigneeva N. P., Zilberberg N. V., Kungurov N. V., Ulomsky E. N., Rusinov V. L. Azolo[5,1-c][1,2,4]triazines and azoloazapurines: Synthesis, antimicrobial activity and in silico studies. ChemistrySelect 2022; 7, art. no. e202104253 (8 pp.). doi: 10.1002/slct.202104253
- Savateev K. V., Ulomsky E. N., Butorin I. I., Charushin V. N., Rusinov V. L., Chupakhin O. N. Azoloazines as A2a receptor antagonists.Structure–activity relationship. Russ. Chem. Rev. 2018; 87, 636–669. doi: 10.1070/RCR4792
- Han Ch., Zhang J., Zheng M., Xiao Y., Li Y., Liu G. An integrated drug-likeness study for bicyclic privileged structures: from physicochemical properties to in vitro ADME properties. Mol. Divers. 2011; 15, 857–876. doi: 10.1007/s11030-011-9317-2
- Hubatsch I., Ragnarsson E. G. E., Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007; 2, 2111–2119. doi: 10.1038/nprot.2007.303
- Jakopin Ž. 2-Aminothiazoles in drug discovery: Privileged structures or toxicophores? Chem. Biol. Interact. 2020; 330, art. no. 109244 (8 pp.). doi: 10.1016/j. cbi.2020.109244
- Atmaram U. A., Roopan S. M. Biological activity of oxadiazole and thiadiazole derivatives. Appl. Microbiol. Biotechnol. 2022; 106, 3489–3505. doi: 10.1007/s00253-022-11969-0
- He M., Fan M., Peng Z., Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur. J. Med. Chem. 2021; 221, art. no. 113546 (29 pp.). doi: 10.1016/j.ejmech.2021.113546
- Rakesh K. P., Shantharam C. S., Sridhara M. B., Manukumar H. M., Qin H.-L. Benzisoxazole: a privileged scaffold for medicinal chemistry. Med. Chem. Commun. 2017; 8, 2023–2039. doi: 10.1039/c7md00449d
- Saroha B., Kumar G., Kumari M., Kaur R., Raghav N., Sharma P. K., Kumar N., Kumar S. A decennary update on diverse heterocycles and their intermediates as privileged scaffolds for cathepsin B inhibition. Int. J. Biol. Macromol. 2022; 222 (Part B),2270–2308. doi: 10.1016/j. ijbiomac.2022.10.017
- Avula S. K., Das B., Csuk R., Al-Harrasi A. Naturally occurring O-heterocycles as anticancer agents. Anticancer Agents Med.Chem. 2022; 22, 3208–3218. doi: 10.2174/1871520621666211108091444
- Pairas G. N., Perperopoulou F., Tsoungas P. G., Varvounis G. The isoxazole ring and its N-oxide: A privileged core structure in neuropsychiatric therapeutics. ChemMedChem. 2017; 12, 408–419. doi: 10.1002/ cmdc.201700023
- Wang Xi., Wang Xu., Zhao Y., Zhang X. Two previously undescribed benzofuran derivatives from the flowers of Callistephuschinensis. Phytochem. Lett. 2022; 51, 145–148. doi: 10.1016/j.phytol.2022.08.012
- Abu-Hashem A. A., Hussein H. A. R., Aly A. S., Gouda M. A. Reactivity of benzofuran derivatives. Synth. Commun. 2014; 44, 2899–2920. doi: 10.1080/00397911.2014.907425
- Abbas A. A., Dawood K. M. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv. 2023; 13, 11096–11120. doi: 10.1039/d3ra01383a
- Fuloria Sh., Sekar M., Khattulanuar F. S., Gan S. H., Rani N. N. I. M., Ravi S., Subramaniyan V., Jeyabalan S., Begum M. Y., Chidambaram K., Sathasivam K. V., Safi Sh. Z., Wu Y. S., Nordin R., Maziz M. N. H., Kumarasamy V., Lum P. T., Fuloria N. K.Chemistry, biosynthesis and pharmacology of viniferin: Potential resveratrol-derived molecules for new drug discovery, development and therapy. Molecules 2022; 27, art. no. 5072 (33 pp.). doi: 10.3390/molecules27165072
- Khanam H., Shamsuzzaman. Bioactive benzofuran derivatives: A review. Eur. J. Med. Chem. 2015; 97, 483–504. doi:10.1016/j.ejmech.2014.11.039
- Chiummiento L., D’Orsi R., Funicello M., Lupattelli P. Last decade of unconventional methodologies for the synthesis of substituted benzofurans. Molecules 2020; 25, art. no. 2327 (52 pp.). doi: 10.3390/molecules25102327
- Modell A. E., Blosser S. L., Arora P. S. Systematic targeting of protein–protein interactions. Trends Pharmacol. Sci. 2016; 37, 702–713. doi: 10.1016/j.tips.2016.05.008
- Farhat J., Alzyoud L., Alwahsh M., Al-Omari B. Structure–activity relationship of benzofuran derivatives with potential anticancer activity. Cancers (Basel) 2022; 14, art. no. 2196 (22 pp.). doi: 10.3390/cancers14092196
- Dawood K. M. Benzofuran derivatives: a patent review. Expert Opin. Ther. Pat. 2013; 23, 1133–1156. doi:10.1517/13543776.2013.801455
- Xu Zh., Zhao Sh., Lv Z., Feng L., Wang Y., Zhang F., Bai L., Deng J. Benzofuran derivatives and their anti-tubercular, antibacterial activities. Eur. J. Med. Chem. 2019; 162, 266–276. doi: 10.1016/j.ejmech.2018.11.025
- Nevagi R. J., Dighe S. N., Dighe S. N. Biological and medicinal significance of benzofuran. Eur. J. Med. Chem. 2015; 97, 561–581. doi: 10.1016/j.ejmech.2014.10.085
- Ahmad A., Nawaz M. I. Molecular mechanism of VEGF and its role in pathological angiogenesis. J. Cell. Biochem. 2022; 123, 1938–1965. doi: 10.1002/jcb.30344
- Malekan M., Ebrahimzadeh M. A. Vascular endothelial growth factor receptors [VEGFR] as target in breast cancer treatment: Current status in preclinical and clinical studies and future directions. Curr. Top. Med. Chem. 2022; 22, 891–920. doi: 10.2174/1568026622666220308161710
- Olsson A.-K., Dimberg A., Kreuger J., Claesson-Welsh L. VEGF receptor signalling – in control of vascular function. Nat. Rev. Mol. Cell Biol. 2006; 7, 359–371. doi: 10.1038/nrm1911
- Mabeta P., Steenkamp V. The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int. J. Mol. Sci. 2022; 23, art. no. 15585 (14 pp.). doi: 10.3390/ijms232415585
- Zhang Y., Zou J.-Y., Wang Zh., Wang Y. Fruquintinib: a novel antivascular endothelial growth factor receptor tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer. Cancer Manag. Res. 2019; 11, 7787–7803. doi: 10.2147/CMAR.S215533
- Li X., Zhou J., Wang X., Li Ch., Ma Z., Wan Q., Peng F. New advances in the research of clinical treatment and novel anticanceragents in tumor angiogenesis. Biomed. Pharmacother. 2023; 163, art. no. 114806 (16 pp.). doi: 10.1016/j.biopha.2023.114806
- Sun Q., Zhou J., Zhang Zh., Guo M., Liang J., Zhou F., Long J., Zhang W., Yin F., Cai H., Yang H., Zhang W., Gu Y., Ni L., Sai Y., Cui Y., Zhang M., Hong M., Sun J., Yang Zh., Qing W., Su W., Ren Y. Discovery of fruquintinib, a potent and highly selective small molecule inhibitor of VEGFR 1, 2, 3 tyrosine kinases for cancer therapy. Cancer Biol. Ther. 2014; 15, 1635–1645. doi:10.4161/15384047.2014.964087
- Chen Zh., Jiang L. The clinical application of fruquintinib on colorectal cancer. Expert Rev. Clin. Pharmacol. 2019; 12, 713–721. doi:10.1080/17512433.2019.1630272
- Shirley M. Fruquintinib: First global approval. Drugs 2018; 78, 1757–1761. doi: 10.1007/s40265-018-0998-z
- Lavacchi D., Roviello G., Guidolin A., Romano S., Venturini J., Caliman E., Vannini A., Giommoni E., Pellegrini E., Brugia M., Pillozzi S., Antonuzzo L. Evaluation of fruquintinib in the continuum of care of patients with colorectal cancer. Int. J. Mol. Sci. 2023; 24, art. no. 5840 (12 pp.). doi: 10.3390/ijms24065840
- Modi S. J., Kulkarni V. K. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ’DFG-out’ inhibitors. J. Biomol. Struct. Dyn. 2022; 40, 5712–5727. doi: 10.1080/07391102.2021.1872417
- Daina A., Michielin O., Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017; 7, art. no. 42717 (13 pp.). doi: 10.1038/ srep42717
- Moriguchi I., Hirono Sh., Liu Q., Nakagome I., Matsushita Y. Simple method of calculating octanol / water partition coefficient.Chem. Pharm. Bull. 1992; 40, 127–130. doi: 10.1248/cpb.40.127
- Moriguchi I., Hirono Sh., Nakagome I., Hirano H. Comparison of reliability of log P values for drugs calculated by several methods. Chem. Pharm. Bull. 1994; 42, 976–978. doi: 10.1248/cpb.42.976
- Lipinski Ch. A., Lombardo F., Dominy D. W., Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001; 46, 3–26. doi: 10.1016/s0169-409x(00)00129-0
- PerkinElmer. https://www.perkinelmer.com/analytical-and-enterprise-solutions.html (accessed on: September 24, 2023)
- Molinspiration Cheminformatics. https://www.molinspiration.com/cgi-bin/properties (accessed on: September 24, 2023)
- Ali J., Camilleri P., Brown M. B., Hutt A. J., Kirton S. B. In silico prediction of aqueous solubility using simple QSPR models: theimportance of phenol and phenol-like moieties. J. Chem. Inf. Model. 2012; 52, 2950–2957. doi: 10.1021/ci300447c
- Silicos-IT. https://www.silicos-it.be/ (accessed on: September 24, 2023)
- Wang X., Bove A. M., Simone G., Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 2020; 8, art. no. 599281 (12 pp.). doi: 10.3389/fcell.2020.599281
- Peng F.-W., Liu D.-K., Zhang Q.-W., Xu Y.-G., Shi L. VE-GFR-2 inhibitors and the therapeutic applications thereof: a patent review (2012–2016). Expert Opin. Ther. Pat. 2017; 27, 987–1004. doi: 10.1080/13543776.2017.1344215
- Lipinski Ch. A. Leadand drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004; 1, 337–341. doi: 10.1016/j.ddtec.2004.11.007
- Veber D. F., Johnson S. R., Cheng H.-Y., Smith B. R., Ward K. W., Kopple K. D. Molecular properties that influence the oralbioavailability of drug candidates. J. Med. Chem. 2002; 45, 2615–2623. doi: 10.1021/jm020017n
- Gu Y., Wang J., Li K., Zhang L., Ren H., Guo L., Sai Y., Zhang W., Su W. Preclinical pharmacokinetics and disposition of a novel selective VEGFR inhibitor fruquintinib (HMPL-013) and the prediction of its human pharmacokinetics. Cancer Chemother.Pharmacol. 2014; 74, 95–115. doi: 10.1007/s00280-014-2471-3
- Kelder J., Grootenhuis P. D. J., Bayada D. M., Delbressine L. P. C., Ploemen J.-P. Polar molecular surface as a dominatingdeterminant for oral absorption and brain penetration of drugs. Pharm. Res. 1999; 16, 1514–1519. doi: 10.1023/A:1015040217741
- van de Waterbeemd H., Camenish G., Folkers G., Chretien J. R., Raevsky O. A. Estimation of blood–brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 1998; 6, 151–156. doi: 10.3109/10611869808997889
- Levin V. A. Relationship of octanol / water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem.1980; 23, 682–684. doi: 10.1021/ jm00180a022
- Hansch C., Leo A. J. Substituent constant for correlation analysis in chemistry and biology. New York: Wiley 1979. doi:10.1002/jps.2600690938
- Ghose A. K., Herbertz T., Hudkins R. L., Dorsey B. D., Mallamo J. P. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem. Neurosci. 2012; 3, 50–68. doi: 10.1021/cn200100h
- Pajouhesh H., Lenz G. R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005; 2, 541–553. doi: 10.1602/neurorx.2.4.541
- de Klerk D. J., Honeywell R. J., Jansen G., Peters G. J. Transporter and lysosomal mediated (multi)drug resistance to tyrosine kinase inhibitors and potential strategies to overcome resistance. Cancers (Basel) 2018; 10, art. no. 503 (27 pp.). doi: 10.3390/cancers10120503
- Fischer H., Gottschlich R., Seelig A. Blood–brain barrier permeation: Molecular parameters governing passive diffusion. J. Membr. Biol. 1998; 165, 201–211. doi: 10.1007/ s002329900434
- Raub T. J., Lutzke B. S., Andrus P. K., Sawada G. A., Staton B. A. Early preclinical evaluation of brain exposure in support of hitidentification and lead optimization. In: Borchardt R. T., Kerns E. H., Hageman M. J., Thakker D. R., Stevens J. L. (eds.) Optimizing the"Drug-Like" Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, Vol. IV. New York: Springer 2006; 355–410. doi: 10.1007/978-0-387-44961-6_16
- Wang R., Cong D., Bai Y., Zhang W. Case report: long-term sustained remission in a case of metastatic colon cancer with high microsatellite instability and KRAS exon 2 p.G12D mutation treated with fruquintinib after local radiotherapy: a case report and literature review. Front. Pharmacol. 2023; 14, art. no. 1207369 (8 pp.). doi: 10.3389/fphar.2023.1207369
- Hoy S. M. Sintilimab: First global approval. Drugs 2019; 79, 341–346. doi: 10.1007/s40265-019-1066-z
- Guo Y., Zhang W., Ying J., Zhang Y., Pan Y., Qiu W., Fan Q., Xu Q., Ma Y., Wang G., Guo J., Su W., Fan S., Tan P., Wang Y., Luo Y., Zhou H., Li J. Phase 1b/2 trial of fruquintinib plus sintilimab in treating advanced solid tumours: The dose-escalation and metastatic colorectal cancer cohort in the dose-expansion phases. Eur. J. Cancer 2023; 181, 26–37. doi: 10.1016/j.ejca.2022.12.004
- Ma Sh., Chen R., Duan L., Li Ch., Yang T., Wang J., Zhao D. Efficacy and safety of toripalimab with fruquintinib in the third-line treatment of refractory advanced metastatic colorectal cancer: results of a single-arm, single-center, prospective, phase II clinical study. J. Gastrointest. Oncol. 2023; 14, 1052–1063. doi: 10.21037/jgo-23-108
- Keam S. J. Toripalimab: First global approval. Drugs 2019; 79, 573–578. doi: 10.1007/s40265-019-01076-2
- Ding X., Liu Y., Zhang Y., Liang J., Li Q., Hu H., Zhou Y. Efficacy and safety of fruquintinib as thirdor further-line therapy for patients with advanced bone and soft tissue sarcoma: a multicenter retrospective study. Anticancer Drugs 2023; 34, 877–882. doi: 10.1097/ CAD.0000000000001482
- Zhang P., Yang Y., Gou H., Li Q. Phase II study of fruquintinib as secondor further-line therapy for patients with advanced biliary tract cancer. J. Clin. Oncol. 2023; 41(Suppl), art. no. e16161 (1 pp.). doi: 10.1200/ JCO.2023.41.16_suppl.e16161
- Deng Y.-Y., Chen Y.-W., Wang M.-X., Zhu P.-F., Pan Sh.-Y., Jiang D.-Y., Chen Zh.-L., Yang L. Acute aortic dissection caused by fruquintinib for metastatic colorectal cancer–a case report and literature review. Transl. Cancer Res. 2023; 12, 177–185. doi: 10.21037/tcr-22-1872
- Zhang N., Xin X., Feng N., Wu D., Zhang J., Yu T., Jiang Q., Gao M., Yang H., Zhao S., Tian Q., Zhang Zh. Combiningfruquintinib and doxorubicin in size-converted nano-drug carriers for tumor therapy. ACS Biomater. Sci. Eng. 2022; 8, 1907–1920. doi:10.1021/acsbiomaterials.1c01606
Štítky
Pharmacy Clinical pharmacologyČlánok vyšiel v časopise
Czech and Slovak Pharmacy
2023 Číslo 6
Najčítanejšie v tomto čísle
- Analysis of medication administration in relation to food and beverages in inpatients
- Ethical aspects of conducting clinical trials of human medicinal products
- Potential impact on mental health in patients with treatment-resistant schizophrenia – clozapine augmentation with long-acting parenteral antipsychotics: a case series
- Brief insight into the in silico properties, structure–activity relationships and biotransformation of fruquintinib, an anticancer drug of a new generation containing a privileged benzofuran scaffold