#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

50 rokov od objavu hemoglobínu HbA1c


Authors: Jozef Čársky
Authors‘ workplace: Ústav lekárskej chémie, biochémie a klinickej biochémie, LF UK, Bratislava
Published in: Diab Obez 2019; 19(38): 84-89

Overview

In 1968, an Iranian immunologist Samuel Rahbar published a random finding of a minor component of human hemoglobin (HbA1c) in people with diabetes. This finding opened wide scope for research and has produced valuable results: glycohemoglobin HbA1c has become an objective marker of long-term metabolic compensation of diabetes mellitus in clinical practice and the study of the complex glycation process of biomolecules has resulted in the identification of the molecular mechanism of the pathogenesis of chronic diabetic complications and search of the possibility for its influencing.

Keywords:

Glycation – glycohemoglobin HbA1c – patogenesis of chronic diabetic complications


Sources
  1. Rahbar S. An abnormal hemoglobin in red cells of diabetics. Clin Chim Acta 1968; 22(2): 296–298. Dostupné z DOI: <http://dx.doi.org/10.1016/0009–8981(68)90372–0>.
  2. Rahbar S, Blumenfeld O, Ranney HM. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 1969; 36(5): 838–843. Dostupné z DOI: <http://dx.doi.org/10.1016/0006–291x(69)90685–8>.
  3. Allen DW, Schroeder WA, Balog J. Observation on the chromatographic heterogenity of normal adult and fetal human hemoglobin. J Am Chem Soc 1958; 80(7): 1628–1634. Dostupné z DOI: <https://doi.org/10.1021/ja01540a030>.
  4. Flückiger R, Winterhalter KH. In vitro synthesis of hemoglobin HbA1c. FEBS Lett 1976; 71: 356–360. Dostupné z DOI: <http://dx.doi.org/10.1016/0014–5793(76)80969–6>.
  5. Bunn HF, Haney DN, Kamin S et al. The biosynthesis of human hemoglobin A1c. J Clin Inves. 1976; 57(6): 1652–1659. Dostupné z DOI: <http://dx.doi.org/10.1172/JCI108436>.
  6. Bunn HF, Haney DN, Gabbay KH et al. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun 1975; 67(1): 103–109. Dostupné z DOI: <http://dx.doi.org/10.1016/0006–291x(75)90289–2>.
  7. Ditzel J, Standl E. The problem of tissue oxygenation in diabetes mellitus. Acta Med Scand 1975; 578(Suppl): 49–83.
  8. Coletta M, Amiconi G, Bellelli A et al. Alteration of T-state Binding Properties of naturally glycated Hemoglobin HbA1c. J Biol Chem 1988; 203: 233–239.
  9. Koenig RJ, Peterson CM, Jones RL et al. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med 1976; 295(8): 417–420. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJM197608192950804>.
  10. [UK Prospective Diabetes Studium]. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–853. Erratum in Lancet 1999; 354(9178): 602.
  11. Thornalley P. The clinical significance of glycation. Clin Lab 1999; 45: 263–273.
  12. Johnson RN, Metcalf PA, Baker JR. Fructosamine: a new approach to the estimation of serum glycosyl-protein. An index of diabetic control. Clin Chim Acta 1983; 127(1): 87–95. Dostupné z DOI: <http://dx.doi.org/10.1016/0009–8981(83)90078–5>.
  13. Baynes JW. Role of oxidative stress in development of complication in diabetes. Diabetes 1991; 40(4): 205–212. Dostupné z DOI: <http://dx.doi.org/10.2337/diab.40.4.405>.
  14. Hunt JV, Wolff SP. Oxidative glycation and free radical production: A causal mechanism of diabetic complications. Free Radic Res Commun 1991; 12–13(Pt 1): 115–123.
  15. Wolff SP. Free radicals and glycation theory. In: Ikan R (ed). The Maillard reaction/consequence for the chemical and life sciences. J. Wiley: New York 2006: 74–88. ISBN 9780471963004.
  16. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54(6): 1615–1625. Dostupné z DOI: <http://dx.doi.org/10.2337/diabetes.54.6.1615>.
  17. Rácz O, Šipulová A. Patogenéza chronických diabetických komplikácií. In: Kreze A, Langer P, Klimeš I et al (eds). Všeobecná a klinická endokrinológia. Academic Electronic Press: Bratislava 2004: 654–660.
  18. Čársky J. Mitochondrial Diabetology. In: Gvozdjáková A (ed.). Mitochondrial Medicine – Mitochondrial Metabolism, Diseases, Diagnosis and Therapy. Springer Science 2008: 129–147. ISBN 978–1–4020–6713–6.
  19. Jakus V, Cársky J, Hrnciarová M. Význam koncových produktov pokročilej glykácie – AGE produktov. Bratisl lek Listy 1998; 99(7): 368–375.
  20. Čársky J. Voľné radikály a diabetes mellitus. In: Z. Ďuračková Ľ, Bergendi J, Čársky (eds). Voľné radikály a antioxidanty v medicíne. Slovak Academic Press: Bratislava 1999: 177- 202. ISBN 80–88908–46–9.
  21. Schmidt AM, Hori O, Cao R et al. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes 1996; 45(Suppl 3): S77-S80. Dostupné z DOI: <http://dx.doi.org/10.2337/diab.45.3.s77>.
  22. Yan SD, Stern D, Schmidt AM. What´s the RAGE ? The receptor for advanced glycation end products (AGE) and the dark side of glucose. Eur J Clin Invest 1997; 27(3): 179–181. Dostupné z DOI: <http://dx.doi.org/10.1046/j.1365–2362.1996.00072.x>.
  23. Čársky J. Glykácia proteínov a diabetes mellitus. In: Ferenčík, M. (ed.): Zápal – fundamentálny princíp vzniku chorôb. Balneotherma: Bratislava 2009: 192–199. ISBN 978–80–970156–1–9.
  24. Maillard IC. Action des acides aminés sur les sucres: formation des mélanoidines par voie méthodique. C R Hebd Séances Acad Sci 1912; 154: 66–68.
  25. Monnier VM, Cerami A. Nonenzymatic glycosylation and browning of proteins in vivo. In: Maillard reaction in foods and nutrition. ACS Symposium Series; American Chemical Society: Washington, DC: 1983; 215: 431–449. Dostupné z DOI: <http://doi 10.1021/bk-1983–0215.ch023>.
  26. Monnier VM, Cerami A. Detection of nonenzymatic browning products in human lens. Biochem Biophys Acta 1983; 760(1): 97–103. Dostupné z DOI: <http://dx.doi.org/10.1016/0304–4165(83)90129–0>.
  27. Tessier FJ. The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol Biol (Paris) 2010; 58(3): 214–219. Dostupné z DOI: <http://dx.doi.org/10.1016/j.patbio.2009.09.014>.
  28. Trivelli LA, Ranney HM, Lai HT. Hemoglobin components in patients with diabetes mellitus. N Engl J Med 1971; 284(7): 353–357. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJM197102182840703>.
  29. Gabbay KH, Hasty K, Breslow JL et al. Glycosylated hemoglobin and long-term blood glucose control in diabetes mellitus. J Clin Endocrinol Metab 1977; 44(5): 859–864. Dostupné z DOI: <http://dx.doi.org/10.1210/jcem-44–5–859>.
  30. Goldstein DE, Parker KM, England JD Jr et al. Clinical Application of Glycosylated Hemoglobin Measurements Diabetes 1982; 31(Supplement 3): 70–78. Dostupné z DOI: <https://doi.org/10.2337/diab.31.3.S70>.
  31. Michalková D, Čársky J, Birčák J et al. Glykozylovaný hemoglobín HbA1c ako indikátor metabolickej kompenzácie u detí s diabetes mellitus. Čes-slov Pediat 1981; 36(5): 243–247.
  32. Vozár J, Cársky J, Mikulecký M et al. Klinický význam určenia hladiny glykozyloného hemoglobínu u chorých s diabetes mellitus. Bratisl lek Listy 1982; 77(1): 12–23.
  33. Rácz O, Vícha T, Pačin J. Glykohemoglobín, glykácia bielkovín a diabetes mellitus. Osveta: Martin 1989.
  34. Edelstein D, Brownlee M. Mechanistic studies of advanced glycosylation end-product inhibition by aminoguanidine. Diabetes 1992; 41(1): 26–29. Dostupné z DOI: <http://dx.doi.org/10.2337/diab.41.1.26>.
  35. Sugiyama T, Miyamoto K, Katagiri S. Fetal toxicity of aminoguanidine in mice and rats. J Toxicol Sci 1986; 11(3): 189–195. Dostupné z DOI: <http://dx.doi.org/10.2131/jts.11.189>.
  36. Hrnciarová M, Cársky J, Jakus V et al Inhibícia peroxidácie lipidov v erytrocytoch diabetických potkanov aminoguanidínom, rezorcylidénaminoguanidínom a ich kyslíkatými a sírnymi analógmi. Bratisl lek Listy 1998); 99(7): 364–367.
  37. Waczulíková I, Ziegelhöffer A, Országhová Z et al. Fluidizing effect of resorcylidene aminoguanidine on sarcolemmal membranes in streptosotocin-diabetic rats: blunted adaptation of diabetic myocardium to Ca² overload. J Physiol Pharmacol 2002; 53(4 Pt): 727–739.
  38. Jakus V, Hrnciarová M, Cársky J et al. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidative activity. Life Sci 1999; 65(18–19): 1991–1993. Dostupné z DOI: <http://dx.doi.org/10.1016/s0024–3205(99)00462–2>.
  39. Taguchi T, Sugiura M, Hamada Y et al. Inhibition of protein glycation by Schiff base between aminoguanidine and pyridoxal. Eur J Pharmacol 1999; 378(3): 283–289. Dostupné z DOI: <http://dx.doi.org/10.1016/s0014–2999(99)00471–9>.
  40. Gebel E. The start of something good. The Discovery of HbA1c and the American Diabetes Assotiation Samuel Rahbar outstanding discovery Award. Diabetes Care 2012; 35(12): 2429–2431. Dostupné z DOI: <http://dx.doi.org/10.2337/dc12–1763>.
  41. Azizi MH, Bahadori M, Azizi F. Breakthrough Discovery of HbA1c by Professor Samuel Rahbar in 1968. Arch Iran Med 2013; 16(12): 743–745. Dostupné z DOI: <http://dx.doi.org/0131612/AIM.0013>.
  42. Ziegelhöffer A, Ravingerová T, Styk J et al. Mechanism that may by involved tolerance of the diabetic heart. Mol Cell Biochem 1997; 176(1–2): 191–198.
  43. Jakus V, Hrnciarová M, Cársky J et al. Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci 1999; 65(18–19): 1991–1993. Dostupné z DOI: <http://dx.doi.org/10.1016/s0024–3205(99)00462–2>.
  44. Muchová J, Liptáková A, Országhová Z et al. Antioxidant systems in polymorphonuclear leucocytes of Type 2 diabetes mellitus. Diabet Med 1999; 16(1): 74–78. Dostupné z DOI: <http://dx.doi.org/10.1046/j.1464–5491.1999.00015.x>. (74 cit.)
  45. Jakuš V. The role of the radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratisl lek Listy 2000; 101(10): 541–551.
  46. Waczulíkova I, Sikurová L, Cársky J et al. Decreased fluidity of isolated erythrocyte membranes in type 1 and 2 diabetes. Effect of resorcylideneaminoguanidine. Gen Physiol Biophys 2000; 19(4): 381–392.
  47. Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 2004; 53(2): 131–142.
  48. Ulicná O, Vancová O, Bozek P et al. Rooibos tea (Aspalathus linearis) partially prevents oxidative stress in streptozocin-induced diabetic rats. Physiol Res 2006; 55(2): 157–164.
  49. Viktorínová A, Toserová E, Krizko M et al. Altered metabolism of copper, zinc and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism 2009; 58(10): 1477–1482. Dostupné z DOI: <http://dx.doi.org/10.1016/j.metabol.2009.04.035>.
  50. Kostolanská J, Jakus V, Barák L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well contrplled children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2009; 22(5): 433–442.
  51. Duracková Z. Some current insights into oxidative stress. Physiol Res 2010; 59(4): 459–469.
Labels
Diabetology Obesitology

Article was published in

Diabetes and obesity

Issue 38

2019 Issue 38
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#