The Role of microRNA in head and neck cancer focusing on sinonasal carcinoma
Authors:
Ing. Helena Kovaříková; Mgr. Ph.D. Marcela Chmelařová; prof. MUDr. CSc. Vladimír Palička, Dr.h.c.
Authors place of work:
Ústav klinické biochemie a diagnostiky LF UK a FN Hradec Králové: Sokolská
581
Published in the journal:
Čas. Lék. čes. 2016; 155: 99-104
Category:
Review Articles
Summary
MicroRNAs are small (18–25 nt) noncoding RNA molecules that are part of gene expression regulation and influence tumorigenesis. They could possibly be used as biomarkers and therapeutic targets in cancer in the future.
Head and neck cancer is the sixth most common malignancy worldwide. These also include sinonasal carcinoma, a rare disease arising in the epithelium of respiratory tract, which is very poorly studied from the molecular perspective.
MicroRNAs that have influence on pathogenesis of head and neck tumors have been divided into three categories: microRNAs associated with invasiveness and metastatic processes, microRNAs operating as oncogenes and microRNAs associated with HPV status and smoking. We expect that the described microRNAs could be part of regulatory mechanisms also in sinonasal carcinoma.
Keywords:
epigenetics, microRNAs, head and neck cancer, sinonasal carcinoma
Zdroje
1. Andreghetto FM, Klingbeil MFG, Soares RM et al. Evaluation of microRNA expression in head and neck squamous cell carcinoma cell lines and in primary culture of oral keratinocytes. Einstein (São Paulo) 2011; 9(4): 442−448.
2. Van Dijk BA, Gatta G, Capocaccia R et al. Rare cancers of the head and neck area in Europe. Eur J Cancer 2012; 48(6): 783−796.
3. Sharma A, Jagadesan P, Chaudhari P et al. Six years analysis of compliance to weekly Concurrent Chemo-Radiotherapy in Head and Neck Carcinomas. Clin Otolaryngol 2015 Nov 2; doi: 10.1111/coa.12580.
4. Hashibe M, Brennan P, Chuang SC et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 2009; 18(2): 541−550.
5. Joshi P, Dutta S, Chaturvedi P, Nair S. Head and neck cancers in developing countries. Rambam Maimonides Med J 2014 Apr 28; 5(2): e0009; doi: 10.5041/RMMJ.10143.
6. SVOD: Epidemiologie nádorů v České republice. URL: www.svod.cz/analyse.php?modul=incmor#
7. Batsakis JG, Rice DH, Solomon AR. The pathology of head and neck tumors: squamous and mucous-gland carcinomas of the nasal cavity, paranasal sinuses, and larynx, part 6. Head Neck Surg 1980; 2(6): 497−508.
8. Cerilli LA, Holst VA, Brandwein MS et al. Sinonasal undifferentiated carcinoma: immunohistochemical profile and lack of EBV association. Am J Surg Pathol 2001; 25(2): 156−163.
9. Musy PY, Reibel JF, Levine PA. Sinonasal undifferentiated carcinoma: the search for a better outcome. Laryngoscope 2002; 112(8 Pt 1): 1450−1455.
10. t Mannetje A, Kogevinas M, Luce D et al. Sinonasal cancer, occupation, and tobacco smoking in European women and men. Am J Ind Med 1999; 36(1): 101−107.
11. Alos L, Moyano S, Nadal A et al. Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer 2009; 115(12): 2701−2709.
12. Syrjanen K, Syrjanen S. Detection of human papillomavirus in sinonasal carcinoma: systematic review and meta-analysis.Hum Pathol 2013; 44(6): 983−991.
13. Laco J, Sieglova K, Vosmikova H et al. The presence of high-risk human papillomavirus (HPV) E6/E7 mRNA transcripts in a subset of sinonasal carcinomas is evidence of involvement of HPV in its etiopathogenesis. Virchows Arch 2015.
14. Mensi C, Consonni D, Sieno C et al. Sinonasal cancer and occupational exposure in a population-based registry. Int J Otolaryngol 2013: 672621; doi: 10.1155/2013/672621.
15. Pérez-Escuredo J, Martínez JG, Vivanco B et al. Wood dust–related mutational profile of TP53 in intestinal-type sinonasal adenocarcinoma. Hum Pathol 2012; 43(11): 1894−1901.
16. Esteller M, Epigenetics in cancer. N Engl J Med 2008; 358(11): 1148−1159.
17. Laurent L, Wong E, Li G et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010; 20(3): 320−331.
18. Jones PA, Baylin SB. The Epigenomics of Cancer. Cell 2007; 128(4): 683−692.
19. He X, Chang S, Zhang J et al.Methy Cancer: the database of human DNA methylation and cancer. Nucleic Acids Res 2008; 36: D836−D841.
20. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765): 41−45.
21. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843−854.
22. Homo sapiens miRNAs (1881 sequences) [GRCh38]. URL: www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa
23. Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. 2015.
24. Lee Y, Jeon K, Lee JT et al. MicroRNA maturation: stepwise processing and subcellular localization. Embo J 2002; 21(17): 4663−4670.
25. Lund E, Dahlberg JE. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 2006; 71: 59−66.
26. Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524−15529.
27. Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834−838.
28. Ogawa T, Saiki Y, Shiga K et al. miR-34a is downregulated in cis‑diamminedichloroplatinum treated sinonasal squamous cell carcinoma patients with poor prognosis. Cancer Science 2012; 103(9): 1737−1743.
29. Tamagawa S, Beder LB, Hotomi M et al. Role of miR-200c/miR-141 in the regulation of epithelial-mesenchymal transition and migration in head and neck squamous cell carcinoma. Int J Mol Med 2014; 33(4): 879−886.
30. Susuki D, Kimura S, Naganuma S et al. Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Sci 2011; 102(12): 2164−2171.
31. Kalfert D, Pesta M, Kulda V et al. MicroRNA profile in site-specific head and neck squamous cell cancer. Anticancer Res 2015; 35(4): 2455−2463.
32. Jensen DH, Dabelsteen E, Specht L et al. Molecular profiling of tumour budding implicates TGFbeta-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma. J Pathol 2015; 236(4): 505−516.
33. Zidar N, Bostjancic E, Gale N et al. Down-regulation of microRNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck-hallmark of epithelial-mesenchymal transition. Hum Pathol 2011; 42(4): 482−488.
34. Bufalino A, Cervigne NK, de Oliveira CE et al. Low miR-143/miR-145 cluster levels induce activin A overexpression in oral squamous cell carcinomas, which contributes to poor prognosis. PLoS One 2015; 10(8): e0136599.
35. Yan B, Li H, Yang X et al. Unraveling regulatory programs for NF-kappaB, p53 and microRNAs in head and neck squamous cell carcinoma. PLoS One 2013; 8(9): e73656.
36. Sun Z, Li S, Kaufman AM et al. miR-21 increases the programmed cell death 4 gene-regulated cell proliferation in head and neck squamous carcinoma cell lines. Oncol Rep 2015; 32: 2283−2289.
37. Piao L, Zhang M, Xie X et al. Nanoparticle delivery of anti-microRNA-21 reduces the tumorigenicity of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2014; 88(2): 514−515.
38. Lajer CB, Garnæs E, Friis-Hansen L et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer 2012; 106(9): 1526−1534.
39. Gao G, Gay HA, Chernock RD et al. A microRNA expression signature for the prognosis of oropharyngeal squamous cell carcinoma. Cancer 2013; 119(1): 72−80.
40. Wald AI, Hoskins EE, Wells SI et al. Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck 2011; 33(4): 504−512.
41. Hui AB, Lin A, Xu W et al. Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma. Clin Cancer Res 2013; 19(8): 2154−2162.
42. Pal A, Melling G, Hinsley EE et al. Cigarette smoke condensate promotes pro-tumourigenic stromal-epithelial interactions by suppressing miR-145. J Oral Pathol Med 2013; 42(4): 309−314.
43. Yu MA, Kiang A, Wang-Rodriguez J et al. Nicotine promotes acquisition of stem cell and epithelial-to-mesenchymal properties in head and neck squamous cell carcinoma. PLoS One 2012; 7(12): e51967.
Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistČlánok vyšiel v časopise
Journal of Czech Physicians
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
Najčítanejšie v tomto čísle
- Evaluation and treatment of portal hypertension
- Refeeding syndrome
- Desaturases of fatty acids (FADS) and their physiological and clinical implication
- Czech section of International College of Surgeons and Jubilee surgical world congress