Zdravotní dopady černobylské katastrofy se zaměřením na endokrinní systém: část 2
Zdravotní dopady černobylské katastrofy se zaměřením na endokrinní systém: část 2
Atomové katastrofy se udály v posledních 70 letech několikrát. Výbuch nukleárního zařízení v roce 1986 v severní částí střední Ukrajiny byl mimořádnou zkušeností proto, že radiační zátěž dopadla na všechny věkové kategorie populace. Následné studie pak přinesly velké množství informací o účinku záření na lidský organismus. Vzhledem k tomu, že se globální bezpečnost postupně zhoršuje, získávají znalosti o biologickém dopadu ionizujícího záření i preventivní opatření k omezeni jeho zhoubných účinků novy rozměr a týkají se nás všech. Tento přehled se zaměřuje na dlouhodobé důsledky černobylské katastrofy, zvláště pak na dopad na endokrinní systém u dětí a dospělých. Přehled zahrnuje souhrn preventivních opatření pro případ atomové katastrofy.
Klíčová slova:
černobylská atomová katastrofa – ionizující záření – endokrinní systém – štítná žláza – rakovina – mamma – těhotenství – děti
Autoři:
Thomas P. Foley 1; Zdeňka Límanová 2; Eliška Potluková 3
Působiště autorů:
Division of Endocrinology & Metabolism, School of Medicine, Graduate School of Public Health, University of Pittsburgh, Children’s Hospital of Pittsburgh, USA
1; Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
2; Division of Medicine, University Hospital Basel, Switzerland
3
Vyšlo v časopise:
Čas. Lék. čes. 2015; 154: 287-291
Kategorie:
Přehledový článek
Souhrn
Atomové katastrofy se udály v posledních 70 letech několikrát. Výbuch nukleárního zařízení v roce 1986 v severní částí střední Ukrajiny byl mimořádnou zkušeností proto, že radiační zátěž dopadla na všechny věkové kategorie populace. Následné studie pak přinesly velké množství informací o účinku záření na lidský organismus. Vzhledem k tomu, že se globální bezpečnost postupně zhoršuje, získávají znalosti o biologickém dopadu ionizujícího záření i preventivní opatření k omezeni jeho zhoubných účinků novy rozměr a týkají se nás všech. Tento přehled se zaměřuje na dlouhodobé důsledky černobylské katastrofy, zvláště pak na dopad na endokrinní systém u dětí a dospělých. Přehled zahrnuje souhrn preventivních opatření pro případ atomové katastrofy.
Klíčová slova:
černobylská atomová katastrofa – ionizující záření – endokrinní systém – štítná žláza – rakovina – mamma – těhotenství – děti
Zdroje
1. American Academy of Pediatrics Committee on Environmental Health. Radiation disasters and children. Pediatrics 2003; 111: 1455–1466.
2. Burnham JW, et al. Radiation. Review. Crit Care Clin 2005; 21: 785–813.
3. Leikin JB, et al. A primer for nuclear terrorism. Dis Mon 2003; 49: 485–516.
4. Mettler FA Jr, et al. Major radiation exposure – what to expect and how to respond. Review. N Engl J Med 2002; 346: 1554–1561.
5. Williams D. Radiation carcinogenesis: lessons from Chernobyl. Review. Oncogene 2009; 27: S9–18.
6. Hatch M, et al. The Chernobyl disaster: cancer following the accident at the Chernobyl nuclear power plant. Review. Epidemiol Rev 2005; 27: 56–66.
7. Little JB. Radiation carcinogenesis. Review. Carcinogenesis 2000; 21: 397–404.
8. Cardis E, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 2005; 97: 724–732.
9. Boice JD, Jr. Radiation-induced thyroid cancer – what’s new? Editorial. J Natl Cancer Inst 2005; 97: 703–705.
10. Caudill CM, et al. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab 2005; 90: 2364–2369.
11. Pacini F, et al. Thyroid consequences of the Chernobyl nuclear accident. Acta Paediatr Suppl 1999; 88; 23–27.
12. Pacini F, et al. Prevalence of thyroid autoantibodies in children and adolescents from Belarus exposed to the Chernobyl radioactive fallout. Lancet 1998; 352: 763–766.
13. Ogrodnik A, et al. Radiation exposure and breast cancer: lessons from Chernobyl. Review. Conn Med 2013; 77: 227–234.
14. Ronckers CM, et al. Radiation and breast cancer: a review of current evidence. Breast Cancer Res 2005; 7: 21–32.
15. Martinucci ME, et al. Incidence of childhood type 1 diabetes mellitus in Gomel, Belarus. J Pediatr Endocrinol Metab 2002; 15: 53–57.
16. Time: Disasters that Shook the World. New York City: Time Home Entertainment 2012.
17. Cardis E, et al. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 2006; 26: 127–140.
18. Jacob P, et al. Thyroid cancer risk in areas of Ukraine and Belarus affected by the Chernobyl accident. Radiat Res 2006; 165: 1–8.
19. Land CE, et al. Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 2003; 160: 707–717.
20. Kim IG, et al. Radiation-induced tumorigenesis. Review. J Biochem Mol Biol 2003; 36: 144–148.
21. Calaf GM, et al. Ionizing radiation induces alterations in cellular proliferation and c-myc, c-jun and c-fos protein expression in breast epithelial cells. Int J Oncol 2004; 25: 1859–1866.
22. Smith TR, et al. DNA damage and breast cancer risk. Carcinogenesis 2003; 24: 883–889.
23. Thompson LH, et al. Recombinational DNA repair and human disease. Review. Mutat Res 2002; 509: 49–78.
24. Hu JJ, et al. Genetic regulation of ionizing radiation sensitivity and breast cancer risk. Environ Mol Mutagen 2002; 39: 208–215.
25. Pierotti MA, et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 1996; 16: 1–14.
26. Santora M, et al. Molecular defects in thyroid carcinomas: role of the RET oncogene in thyroid neoplastic transformation. Eur J Endocrinol 1995; 133: 513–522
27. Basolo F, et al. Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am J Pathol 2002; 160: 247–254.
28. Nikiforov YE, et al. Distinct pattern of RET oncogene rearrangements in morphological variants of radiation induced and sporadic thyroid papillary carcinomas in children. Cancer Res 1997; 57: 1690–1694.
29. Thomas GA, et al. High prevalence of RET-PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET-PTC3 and the solid follicular variant. J Clin Endocrinol Metab 1999; 84: 4232–4238.
30. Santoro M, et al. Gene rearrangement and Chernobyl related thyroid cancers. Br J Cancer 2000; 82: 315–322.
31. Maenhaut C, et al. Gene expression profiles for radiation-induced thyroid cancer. Clin Oncol (R Coll Radiol) 2011; 23: 282–288.
32. Hall EJ. Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 2002; 32: 700–706.
33. Ernst M, et al. Health hazards of radiation exposure in the context of brain imaging research: special consideration for children. J Nucl Med 1998; 39: 689–698.
34. Ron E, et al. Benign and malignant thyroid neoplasms after childhood irradiation for tinea capitis. J Natl Cancer Inst 1980; 65: 7–11.
35. Lundell M, et al. Mortality from leukaemia after irradiation in infancy for skin haemangioma. Radiat Res 1996; 145: 595–601.
36. Auvinen A, et al. Fallout from Chernobyl and incidence of childhood leukaemia in Finland. Br Med J 1994; 309: 151–154.
37. Hjalmars U, et al. Risk of acute childhood leukaemia in Sweden after the Chernobyl reactor accident. Br Med J 1994; 309: 154–157.
38. Rallison M, et al. Thyroid nodularity in children. JAMA 1975; 233: 1069–1072.
39. Holm L, et al. Thyroid cancer after diagnostic doses of iodine-131: a retrospective cohort study. Natl Cancer Inst 1988; 80: 1132–1138.
40. Amsel J, et al. Relationship of site-specific cancer mortality rates to altitude. Carcinogenesis 1982; 3: 461–465.
41. Frigerio NA, et al. Carcinogenic and genetic hazard from background radiation. In: Biological and environmental effects of low-level radiation. Vienna: International Atomic Energy Agency 1976.
42. Blot W, et al. Indoor radon and lung cancer in China. J Natl Cancer Inst 1990; 82: 1025–1030.
43. Saenger EL, et al. Incidence of leukaemia following treatment of hyperthyroidism. JAMA 1968; 205: 855–862.
44. Hall P, et al. Leukaemia incidence after 131I exposure. Lancet 1992; 340: 1–4.
45. Foley TP Jr., Charron M, Linkov F, Krenzelok EP. Radiation Terrorism. In Lifshitz F (ed.) Pediatric Endocrinology, ed 5. New York: Informa Healthcare, Inc., 2007, Volume 2, Section VI: Special Considerations and Resources, Chapter 31; 705 –727.
46. Muller I, et al. Does thyroid peroxidase provide an antigenic link between thyroid autoimmunity and breast cancer? Int J Cancer 2014; 134: 1706–1714.
47. Portulano C, et al. The Na+/I– symporter (NIS): mechanism and medical impact. Review. Endocr Rev 2014; 35: 106–149.
48. Brenner AV, et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chernobyl accident. Environ Health Perspect 2011; 119: 933–939.
49. Ostroumova E, et al. Measures of thyroid function among belarusian children and adolescents exposed to iodine-131 from the accident at the Chernobyl nuclear plant. Environ Health Perspect 2013; 121: 865–871.
50. Tronko MD, et al. Autoimmune thyroiditis and exposure to iodine 131 in the Ukrainian cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: results from the first screening cycle (1998–2000). J Clin Endocrinol Metab 2006; 91: 4344–4351.
51. Hatch M, et al. Prevalence of hyperthyroidism after exposure during childhood or adolescence to radioiodines from the Chornobyl nuclear accident: dose-response results from the Ukrainian American cohort study. Radiat Res 2010; 174: 763–772.
52. Kazakov VS, et al. Thyroid cancer after Chernobyl. Nature 1992; 359: 21.
53. Baverstock K, et al. Thyroid cancer after Chernobyl. Nature 1992; 359: 21–22.
54. Evdokimova V, et al. Formation of carcinogenic chromosomal rearrangements in human thyroid cells after induction of double-strand DNA breaks by restriction endonucleases. Endocr Relat Cancer 2012; 19: 271–281.
55. Jargin SV. On the RET rearrangements in Chernobyl-related thyroid cancer. J Thyroid Res 2012; 2012: 373879.
56. Agate L, et al. Thyroid autoantibodies and thyroid function in subjects exposed to Chernobyl fallout during childhood: evidence for a transient radiation-induced elevation of serum thyroid antibodies without an increase in thyroid autoimmune disease. J Clin Endocrinol Metab 2008; 93: 2729–2736.
57. McConnell RJ, et al. Factors associated with elevated serum concentrations of anti-TPO antibodies in subjects with and without diffuse goitre. Results from the Ukrainian-American Cohort Study of thyroid cancer and other thyroid diseases following the Chornobyl accident. Clin Endocrinol (Oxf) 2007; 67: 879–890.
58. Schneider AB, et al. Potassium iodide prophylaxis: what have we learned and questions raised by the accident at the Fukushima Daiichi Nuclear Power Plant. Thyroid 2012; 22: 344–346.
59. Reiners C, et al. Potassium iodide (KI) to block the thyroid from exposure to I-131: current questions and answers to be discussed. Radiat Environ Biophys 2013; 52: 189–193.
60. Williams ED. Radiation-induced thyroid cancer. Histopathology 1993; 23: 387–389.
61. Travis CC, et al. 131I ablation treatment in young females after the Chernobyl accident. J Nucl Med 2006; 47: 1723–1727. Erratum in: J Nucl Med 2007; 48: 7.
62. Pukkala E, et al. Breast cancer in Belarus and Ukraine after the Chernobyl accident. Int J Cancer 2006; 119: 651–658.
63. Nauman J, et al. Iodine prophylaxis in Poland after the Chernobyl Reactor Accident: Benefits and risks. Am J Med 1993; 94: 524–532.
64. Lincoln TA. Importance of initial management of persons internally contaminated with radionuclides. Am Ind Hyg Assoc J 1976; 37: 16–21.
65. Law RK, et al. National surveillance for radiological exposures and intentional potassium iodide and iodine product ingestions in the United States associated with the 2011 Japan radiological incident. Clin Toxicol (Phila) 2013; 51: 41–46.
66. Hatch MC, et al. Cancer near the Three Mile Island nuclear plant: radiation emissions. Am J Epidemiol 1990; 132: 397–412; discussion 413–417.
67. Dardynskaia I, et al. Breast cancer trends in two oblasts of Belarus and the Chernobyl accident. Int J Occup Environ Health 2006; 12: 415–422.
68. Okeanov AE, et al. National cancer registry to assess trends after the Chernobyl accident. Swiss Med Wkly 2004; 134: 645–649.
69. Copson E, et al. Prospective Observational Study of Breast Cancer Treatment Outcomes for UK Women Aged 18–40 Years at Diagnosis: The POSH Study. J Natl Cancer Inst 2013; 105: 978–988.
70. Ito C. Trends in the prevalence of diabetes mellitus among Hiroshima atomic bomb survivors. Diabetes Res Clin Pract 1994; 24: S29–S35.
71. Zalutskaya A, et al. Did the Chernobyl incident cause an increase in Type 1 diabetes mellitus incidence in children and adolescents? Diabetologia 2004; 47: 147–148.
72. Bandurska-Stankiewicz E, et al. In Zalutskaya A, et al. (2003) Did the Chernobyl incident cause an increase in type 1 diabetes mellitus incidence in children and adolescents? Diabetologia 2004; 47: 147–148.
73. Lorini R, et al. Comment to: Zalutskaya A, et al. (2004) Did the Chernobyl incident cause an increase in type 1 diabetes mellitus incidence in children and adolescents? Diabetologia 47: 147–148 (Letter). Diabetologia 2005; 48: 2193–2194.
74. Tatsukawa Y, et al. Radiation risk of individual multifactorial diseases in offspring of the atomic-bomb survivors: a clinical health study. J Radiol Prot 2013; 33: 281–293.
75. Moossa AR, et al. Thyroid status and breast cancer. Reappraisal of an old relationship. Ann R Coll Surg Engl 1973; 53: 178–188.
76. Ito K, et al. Breast cancer in patients with Hashimoto’s thyroiditis. Lancet 1975; 2: 1119–1121.
77. Turken O, et al. Breast cancer in association with thyroid disorders. Breast Cancer Res 2003; 5: R110–113.
78. Prinzi N, et al. Prevalence of breast cancer in thyroid diseases: results of a cross-sectional study of 3,921 patients. Breast Cancer Res Treat 2014; 144: 683–688.
79. Jiskra J, et al. Thyroid autoimmunity occurs more frequently in women with breast cancer compared to women with colorectal cancer and controls but it has no impact on relapse-free and overall survival. Oncol Rep 2007; 18: 1603–1611.
80. Eng C. PTEN Hamartoma Tumor Syndrome (PHTS). In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. GeneReviews® (Internet). Seattle (WA): University of Washington, Seattle; 1993–2014. 2001 Nov 29 (updated 2014 Jan 23).
Štítky
Adiktológia Alergológia a imunológia Angiológia Audiológia a foniatria Biochémia Dermatológia Detská gastroenterológia Detská chirurgia Detská kardiológia Detská neurológia Detská otorinolaryngológia Detská psychiatria Detská reumatológia Diabetológia Farmácia Chirurgia cievna Algeziológia Dentální hygienistkaČlánok vyšiel v časopise
Časopis lékařů českých
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Fixní kombinace paracetamol/kodein nabízí synergické analgetické účinky
- Kombinace metamizol/paracetamol v léčbě pooperační bolesti u zákroků v rámci jednodenní chirurgie
- Tramadol a paracetamol v tlumení poextrakční bolesti
- Antidepresivní efekt kombinovaného analgetika tramadolu s paracetamolem
Najčítanejšie v tomto čísle
- Výšková nemoc
- Nekardiální plicní edém, syndrom akutní dechové tísně
- Chronické srdeční selhání
- Analýza vztahu sérových hladin párů těžkých/lehkých řetězců imunoglobulinu (Hevylite™) k výsledkům standardní gelové elektroforézy a nefelometrického vyšetření bílkovin séra při diagnóze mnohočetného myelomu