Analysis of the Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease
Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.
Vyšlo v časopise:
Analysis of the Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000851
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000851
Souhrn
Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.
Zdroje
1. YuVL
PlouffeJF
PastorisMC
StoutJE
SchousboeM
2002 Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186 127 128
2. PharesCR
WangroongsarbP
ChantraS
PaveenkitipornW
TondellaML
2007 Epidemiology of severe pneumonia caused by Legionella longbeachae, Mycoplasma pneumoniae, and Chlamydia pneumoniae: 1-year, population-based surveillance for severe pneumonia in Thailand. Clin Infect Dis 45 e147 155
3. BibbWF
SorgRJ
ThomasonBM
HicklinMD
SteigerwaltAG
1981 Recognition of a second serogroup of Legionella longbeachae. J Clin Microbiol 14 674 677
4. CameronS
RoderD
WalkerC
FeldheimJ
1991 Epidemiological characteristics of Legionella infection in South Australia: implications for disease control. Aust N Z J Med 21 65 70
5. SteeleTW
MooreCV
SangsterN
1990 Distribution of Legionella longbeachae serogroup 1 and other legionellae in potting soils in Australia. Appl Environ Microbiol 56 2984 2988
6. IsbergRR
O'ConnorTJ
HeidtmanM
2009 The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7 13 24
7. ShinS
RoyCR
2008 Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10 1209 1220
8. NoraT
LommaM
Gomez-ValeroL
BuchrieserC
2009 Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 4
9. MolofskyAB
SwansonMS
2004 Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53 29 40
10. ByrneB
SwansonMS
1998 Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66 3029 3034
11. AsareR
Abu KwaikY
2007 Early trafficking and intracellular replication of Legionella longbeachaea within an ER-derived late endosome-like phagosome. Cell Microbiol 9 1571 1587
12. AsareR
SanticM
GobinI
DoricM
SuttlesJ
2007 Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infect Immun 75 1933 1945
13. BergerKH
IsbergRR
1993 Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7 7 19
14. RoyCR
BergerKH
IsbergRR
1998 Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28 663 674
15. SegalG
PurcellM
ShumanHA
1998 Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95 1669 1674
16. VogelJP
AndrewsHL
WongSK
IsbergRR
1998 Conjugative transfer by the virulence system of Legionella pneumophila. Science 279 873 876
17. BursteinD
ZusmanT
DegtyarE
VinerR
SegalG
2009 Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5 e1000508 doi:10.1371/journal.ppat.1000508
18. EnsmingerAW
IsbergRR
2009 Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12 67 73
19. NinioS
RoyCR
2007 Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15 372 380
20. MorozovaI
QuX
ShiS
AsamaniG
GreenbergJE
2004 Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid 51 127 147
21. GobinI
SusaM
BegicG
HartlandEL
DoricM
2009 Experimental Legionella longbeachae infection in intratracheally inoculated mice. J Med Microbiol 58 723 730
22. MolofskyAB
ByrneBG
WhitfieldNN
MadiganCA
FuseET
2006 Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 17 1093 1104
23. RenT
ZamboniDS
RoyCR
DietrichWF
VanceRE
2006 Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2 e18 doi:10.1371/journal.ppat.0020018
24. WrightEK
GoodartSA
GrowneyJD
HadinotoV
EndrizziMG
2003 Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13 27 36
25. CazaletC
RusniokC
BruggemannH
ZidaneN
MagnierA
2004 Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36 1165 1173
26. ChienM
MorozovaI
ShiS
ShengH
ChenJ
2004 The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305 1966 1968
27. SteinertM
HeunerK
BuchrieserC
Albert-WeissenbergerC
GlöcknerG
2007 Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297 577 587
28. DoyleRM
HeuzenroederMW
2002 A mutation in an ompR-like gene on a Legionella longbeachae serogroup 1 plasmid attenuates virulence. Int J Med Microbiol 292 227 239
29. CazaletC
JarraudS
Ghavi-HelmY
KunstF
GlaserP
2008 Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18 431 441
30. CianciottoNP
2009 Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future Microbiol 4 797 805
31. DebRoyS
DaoJ
SoderbergM
RossierO
CianciottoNP
2006 Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 103 19146 19151
32. FeldmanM
SegalG
2004 A specific genomic location within the icm/dot pathogenesis region of different Legionella species encodes functionally similar but nonhomologous virulence proteins. Infect Immun 72 4503 4511
33. FeldmanM
ZusmanT
HagagS
SegalG
2005 Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci U S A 102 12206 12211
34. NewtonHJ
SansomFM
DaoJ
McAlisterAD
SloanJ
2007 Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 75 5575 5585
35. NagaiH
CambronneED
KaganJC
AmorJC
KahnRA
2005 A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102 826 831
36. KuboriT
HyakutakeA
NagaiH
2008 Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67 1307 1319
37. ShevchukO
BatzillaC
HageleS
KuschH
EngelmannS
2009 Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299 489 508
38. UrwylerS
BrombacherE
HilbiH
2009 Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol 2 107 109
39. UrwylerS
NyfelerY
RagazC
LeeH
MuellerLN
2009 Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10 76 87
40. MachnerMP
IsbergRR
2006 Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11 47 56
41. MurataT
DelpratoA
IngmundsonA
ToomreDK
LambrightDG
2006 The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8 971 977
42. WeberSS
RagazC
HilbiH
2009 The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11 442 460
43. WeberSS
RagazC
ReusK
NyfelerY
HilbiH
2006 Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2 e46 doi:10.1371/journal.ppat.0020046
44. BrombacherE
UrwylerS
RagazC
WeberSS
KamiK
2008 The Rab1 guanine nucleotide exchange factor SidM is a major PtdIns(4)P-binding effector protein of Legionella pneumophila. J Biol Chem 284 4846 4856
45. PanX
LührmannA
SatohA
Laskowski-ArceMA
RoyCR
2008 Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320 1651 1654
46. EiserichJP
EstévezAG
BambergTV
YeYZ
ChumleyPH
1999 Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci U S A 96 6365 6370
47. LurinC
AndrésC
AubourgS
BellaouiM
BittonF
2004 Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16 2089 2103
48. NakamuraT
SchusterG
SugiuraM
SugitaM
2004 Chloroplast RNA-binding and pentatricopeptide repeat proteins. Biochem Soc Trans 32 571 574
49. Schmitz-LinneweberC
SmallI
2008 Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13 663 670
50. BelyiY
StahlM
SovkovaI
KadenP
LuyB
2009 Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase. J Biol Chem 284 20167 20174
51. BelyiY
TabakovaI
StahlM
AktoriesK
2008 Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190 3026 3035
52. BelyiY
NiggewegR
OpitzB
VogelsgesangM
HippenstielS
2006 Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103 16953 16958
53. HeidtmanM
ChenEJ
MoyMY
IsbergRR
2009 Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11 230 248
54. DuchaudE
RusniokC
FrangeulL
BuchrieserC
GivaudanA
2003 The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21 1307 1313
55. HazelbauerGL
FalkeJJ
ParkinsonJS
2008 Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33 9 19
56. KrehenbrinkM
Oppermann-SanioFB
SteinbuchelA
2002 Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Arch Microbiol 177 371 380
57. FuserG
SteinbuchelA
2007 Analysis of genome sequences for genes of cyanophycin metabolism: identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci 7 278 296
58. de BerardinisV
DurotM
WeissenbachJ
SalanoubatM
2009 Acinetobacter baylyi ADP1 as a model for metabolic system biology. Curr Opin Microbiol 12 568 576
59. DiezE
LeeSH
GauthierS
YaraghiZ
TremblayM
2003 Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33 55 60
60. LamkanfiM
AmerA
KannegantiTD
Munoz-PlanilloR
ChenG
2007 The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178 8022 8027
61. LightfieldKL
PerssonJ
BrubakerSW
WitteCE
von MoltkeJ
2008 Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9 1171 1178
62. ZamboniDS
KobayashiKS
KohlsdorfT
OguraY
LongEM
2006 The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7 318 325
63. KentnerD
SourjikV
2006 Spatial organization of the bacterial chemotaxis system. Curr Opin Microbiol 9 619 624
64. La ScolaB
BirtlesRJ
GreubG
HarrisonTJ
RatcliffRM
2004 Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int J Syst Evol Microbiol 54 699 703
65. BrüggemannH
HagmanA
JulesM
SismeiroO
DilliesM
2006 Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8 1228 1240
66. SahrT
BruggemannH
JulesM
LommaM
Albert-WeissenbergerC
2009 Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72 741 762
67. TiadenA
SpirigT
CarranzaP
BruggemannH
RiedelK
2008 Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol 190 7532 7547
68. SpirigT
TiadenA
KieferP
BuchrieserC
VorholtJA
2008 The Legionella autoinducer synthase LqsA produces an alpha-hydroxyketone signaling molecule. J Biol Chem 283 18113 18123
69. TiadenA
SpirigT
WeberSS
BrüggemannH
BosshardR
2007 The Legionella pneumophila response regulator LqsR promotes virulence as an element of the regulatory network controlled by RpoS and LetA. Cell Microbiol 9 2903 2920
70. SkerkerJM
PrasolMS
PerchukBS
BiondiEG
LaubMT
2005 Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3 e334 doi:10.1371/journal.pbio.0030334
71. NewtonHJ
SansomFM
DaoJ
CazaletC
BruggemannH
2008 Significant Role for ladC in Initiation of Legionella pneumophila Infection. Infect Immun 76 3075 3085
72. LoryS
WolfgangM
LeeV
SmithR
2004 The multi-talented bacterial adenylate cyclases. Int J Med Microbiol 293 479 482
73. RasisM
SegalG
2009 The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72 995 1010
74. Gal-MorO
SegalG
2003 Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185 4908 4919
75. ZusmanT
AloniG
HalperinE
KotzerH
DegtyarE
2007 The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63 1508 1523
76. AltmanE
SegalG
2008 The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 90 1985 1996
77. AltoNM
2008 Mimicking small G-proteins: an emerging theme from the bacterial virulence arsenal. Cell Microbiol 10 566 575
78. NagaiH
KaganJC
ZhuX
KahnRA
RoyCR
2002 A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295 679 682
79. de FelipeKS
PampouS
JovanovicOS
PericoneCD
YeSF
2005 Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187 7716 7726
80. BrüggemannH
CazaletC
BuchrieserC
2006 Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr Opin Microbiol 9 86 94. Epub 2006 Jan 2006
81. GlaserP
FrangeulL
BuchrieserC
RusniokC
AmendA
2001 Comparative genomics of Listeria species. Science 294 849 852
82. BuchrieserC
RusniokC
FrangeulL
CouveE
BillaultA
1999 The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 67 4851 4861
83. FrangeulL
GlaserP
RusniokC
BuchrieserC
DuchaudE
2004 CAAT-Box, Contigs-Assembly and Annotation tool-box for genome sequencing projects. Bioinformatics 20 790 797
84. VallenetD
LabarreL
RouyZ
BarbeV
BocsS
2006 MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34 53 65
85. ZerbinoDR
BirneyE
2008 Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 821 829
86. DarlingAC
MauB
BlattnerFR
PernaNT
2004 Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14 1394 1403
87. LiH
RuanJ
DurbinR
2008 Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18 1851 1858
88. MilohanicE
GlaserP
CoppeeJY
FrangeulL
VegaY
2003 Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47 1613 1625
89. YangYH
DudoitS
LuuP
LinDM
PengV
2002 Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30 e15
90. DelmarP
RobinS
DaudinJJ
2005 VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data. Bioinformatics 21 502 508
91. ReinerA
YekutieliD
BenjaminiY
2003 Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19 368 375
92. ChainPS
GrafhamDV
FultonRS
FitzgeraldMG
HostetlerJ
2009 Genomics. Genome project standards in a new era of sequencing. Science 326 236 237
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study in Asian Populations Identifies Variants in and Associated with Systemic Lupus Erythematosus
- Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Genome
- The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling
- Nucleoporins and Transcription: New Connections, New Questions