#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Analysis of the Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease


Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.


Vyšlo v časopise: Analysis of the Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000851
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000851

Souhrn

Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.


Zdroje

1. YuVL

PlouffeJF

PastorisMC

StoutJE

SchousboeM

2002 Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186 127 128

2. PharesCR

WangroongsarbP

ChantraS

PaveenkitipornW

TondellaML

2007 Epidemiology of severe pneumonia caused by Legionella longbeachae, Mycoplasma pneumoniae, and Chlamydia pneumoniae: 1-year, population-based surveillance for severe pneumonia in Thailand. Clin Infect Dis 45 e147 155

3. BibbWF

SorgRJ

ThomasonBM

HicklinMD

SteigerwaltAG

1981 Recognition of a second serogroup of Legionella longbeachae. J Clin Microbiol 14 674 677

4. CameronS

RoderD

WalkerC

FeldheimJ

1991 Epidemiological characteristics of Legionella infection in South Australia: implications for disease control. Aust N Z J Med 21 65 70

5. SteeleTW

MooreCV

SangsterN

1990 Distribution of Legionella longbeachae serogroup 1 and other legionellae in potting soils in Australia. Appl Environ Microbiol 56 2984 2988

6. IsbergRR

O'ConnorTJ

HeidtmanM

2009 The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7 13 24

7. ShinS

RoyCR

2008 Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 10 1209 1220

8. NoraT

LommaM

Gomez-ValeroL

BuchrieserC

2009 Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 4

9. MolofskyAB

SwansonMS

2004 Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53 29 40

10. ByrneB

SwansonMS

1998 Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66 3029 3034

11. AsareR

Abu KwaikY

2007 Early trafficking and intracellular replication of Legionella longbeachaea within an ER-derived late endosome-like phagosome. Cell Microbiol 9 1571 1587

12. AsareR

SanticM

GobinI

DoricM

SuttlesJ

2007 Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infect Immun 75 1933 1945

13. BergerKH

IsbergRR

1993 Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7 7 19

14. RoyCR

BergerKH

IsbergRR

1998 Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28 663 674

15. SegalG

PurcellM

ShumanHA

1998 Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95 1669 1674

16. VogelJP

AndrewsHL

WongSK

IsbergRR

1998 Conjugative transfer by the virulence system of Legionella pneumophila. Science 279 873 876

17. BursteinD

ZusmanT

DegtyarE

VinerR

SegalG

2009 Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5 e1000508 doi:10.1371/journal.ppat.1000508

18. EnsmingerAW

IsbergRR

2009 Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12 67 73

19. NinioS

RoyCR

2007 Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15 372 380

20. MorozovaI

QuX

ShiS

AsamaniG

GreenbergJE

2004 Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid 51 127 147

21. GobinI

SusaM

BegicG

HartlandEL

DoricM

2009 Experimental Legionella longbeachae infection in intratracheally inoculated mice. J Med Microbiol 58 723 730

22. MolofskyAB

ByrneBG

WhitfieldNN

MadiganCA

FuseET

2006 Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 17 1093 1104

23. RenT

ZamboniDS

RoyCR

DietrichWF

VanceRE

2006 Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2 e18 doi:10.1371/journal.ppat.0020018

24. WrightEK

GoodartSA

GrowneyJD

HadinotoV

EndrizziMG

2003 Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13 27 36

25. CazaletC

RusniokC

BruggemannH

ZidaneN

MagnierA

2004 Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36 1165 1173

26. ChienM

MorozovaI

ShiS

ShengH

ChenJ

2004 The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305 1966 1968

27. SteinertM

HeunerK

BuchrieserC

Albert-WeissenbergerC

GlöcknerG

2007 Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297 577 587

28. DoyleRM

HeuzenroederMW

2002 A mutation in an ompR-like gene on a Legionella longbeachae serogroup 1 plasmid attenuates virulence. Int J Med Microbiol 292 227 239

29. CazaletC

JarraudS

Ghavi-HelmY

KunstF

GlaserP

2008 Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18 431 441

30. CianciottoNP

2009 Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future Microbiol 4 797 805

31. DebRoyS

DaoJ

SoderbergM

RossierO

CianciottoNP

2006 Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 103 19146 19151

32. FeldmanM

SegalG

2004 A specific genomic location within the icm/dot pathogenesis region of different Legionella species encodes functionally similar but nonhomologous virulence proteins. Infect Immun 72 4503 4511

33. FeldmanM

ZusmanT

HagagS

SegalG

2005 Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci U S A 102 12206 12211

34. NewtonHJ

SansomFM

DaoJ

McAlisterAD

SloanJ

2007 Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 75 5575 5585

35. NagaiH

CambronneED

KaganJC

AmorJC

KahnRA

2005 A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102 826 831

36. KuboriT

HyakutakeA

NagaiH

2008 Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67 1307 1319

37. ShevchukO

BatzillaC

HageleS

KuschH

EngelmannS

2009 Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. Int J Med Microbiol 299 489 508

38. UrwylerS

BrombacherE

HilbiH

2009 Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol 2 107 109

39. UrwylerS

NyfelerY

RagazC

LeeH

MuellerLN

2009 Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10 76 87

40. MachnerMP

IsbergRR

2006 Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11 47 56

41. MurataT

DelpratoA

IngmundsonA

ToomreDK

LambrightDG

2006 The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8 971 977

42. WeberSS

RagazC

HilbiH

2009 The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11 442 460

43. WeberSS

RagazC

ReusK

NyfelerY

HilbiH

2006 Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2 e46 doi:10.1371/journal.ppat.0020046

44. BrombacherE

UrwylerS

RagazC

WeberSS

KamiK

2008 The Rab1 guanine nucleotide exchange factor SidM is a major PtdIns(4)P-binding effector protein of Legionella pneumophila. J Biol Chem 284 4846 4856

45. PanX

LührmannA

SatohA

Laskowski-ArceMA

RoyCR

2008 Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320 1651 1654

46. EiserichJP

EstévezAG

BambergTV

YeYZ

ChumleyPH

1999 Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci U S A 96 6365 6370

47. LurinC

AndrésC

AubourgS

BellaouiM

BittonF

2004 Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16 2089 2103

48. NakamuraT

SchusterG

SugiuraM

SugitaM

2004 Chloroplast RNA-binding and pentatricopeptide repeat proteins. Biochem Soc Trans 32 571 574

49. Schmitz-LinneweberC

SmallI

2008 Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13 663 670

50. BelyiY

StahlM

SovkovaI

KadenP

LuyB

2009 Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: identification of Lgt1 as a retaining glucosyltransferase. J Biol Chem 284 20167 20174

51. BelyiY

TabakovaI

StahlM

AktoriesK

2008 Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190 3026 3035

52. BelyiY

NiggewegR

OpitzB

VogelsgesangM

HippenstielS

2006 Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103 16953 16958

53. HeidtmanM

ChenEJ

MoyMY

IsbergRR

2009 Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11 230 248

54. DuchaudE

RusniokC

FrangeulL

BuchrieserC

GivaudanA

2003 The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21 1307 1313

55. HazelbauerGL

FalkeJJ

ParkinsonJS

2008 Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33 9 19

56. KrehenbrinkM

Oppermann-SanioFB

SteinbuchelA

2002 Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Arch Microbiol 177 371 380

57. FuserG

SteinbuchelA

2007 Analysis of genome sequences for genes of cyanophycin metabolism: identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci 7 278 296

58. de BerardinisV

DurotM

WeissenbachJ

SalanoubatM

2009 Acinetobacter baylyi ADP1 as a model for metabolic system biology. Curr Opin Microbiol 12 568 576

59. DiezE

LeeSH

GauthierS

YaraghiZ

TremblayM

2003 Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33 55 60

60. LamkanfiM

AmerA

KannegantiTD

Munoz-PlanilloR

ChenG

2007 The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178 8022 8027

61. LightfieldKL

PerssonJ

BrubakerSW

WitteCE

von MoltkeJ

2008 Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9 1171 1178

62. ZamboniDS

KobayashiKS

KohlsdorfT

OguraY

LongEM

2006 The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7 318 325

63. KentnerD

SourjikV

2006 Spatial organization of the bacterial chemotaxis system. Curr Opin Microbiol 9 619 624

64. La ScolaB

BirtlesRJ

GreubG

HarrisonTJ

RatcliffRM

2004 Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int J Syst Evol Microbiol 54 699 703

65. BrüggemannH

HagmanA

JulesM

SismeiroO

DilliesM

2006 Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8 1228 1240

66. SahrT

BruggemannH

JulesM

LommaM

Albert-WeissenbergerC

2009 Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 72 741 762

67. TiadenA

SpirigT

CarranzaP

BruggemannH

RiedelK

2008 Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol 190 7532 7547

68. SpirigT

TiadenA

KieferP

BuchrieserC

VorholtJA

2008 The Legionella autoinducer synthase LqsA produces an alpha-hydroxyketone signaling molecule. J Biol Chem 283 18113 18123

69. TiadenA

SpirigT

WeberSS

BrüggemannH

BosshardR

2007 The Legionella pneumophila response regulator LqsR promotes virulence as an element of the regulatory network controlled by RpoS and LetA. Cell Microbiol 9 2903 2920

70. SkerkerJM

PrasolMS

PerchukBS

BiondiEG

LaubMT

2005 Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3 e334 doi:10.1371/journal.pbio.0030334

71. NewtonHJ

SansomFM

DaoJ

CazaletC

BruggemannH

2008 Significant Role for ladC in Initiation of Legionella pneumophila Infection. Infect Immun 76 3075 3085

72. LoryS

WolfgangM

LeeV

SmithR

2004 The multi-talented bacterial adenylate cyclases. Int J Med Microbiol 293 479 482

73. RasisM

SegalG

2009 The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72 995 1010

74. Gal-MorO

SegalG

2003 Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185 4908 4919

75. ZusmanT

AloniG

HalperinE

KotzerH

DegtyarE

2007 The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63 1508 1523

76. AltmanE

SegalG

2008 The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 90 1985 1996

77. AltoNM

2008 Mimicking small G-proteins: an emerging theme from the bacterial virulence arsenal. Cell Microbiol 10 566 575

78. NagaiH

KaganJC

ZhuX

KahnRA

RoyCR

2002 A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295 679 682

79. de FelipeKS

PampouS

JovanovicOS

PericoneCD

YeSF

2005 Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187 7716 7726

80. BrüggemannH

CazaletC

BuchrieserC

2006 Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr Opin Microbiol 9 86 94. Epub 2006 Jan 2006

81. GlaserP

FrangeulL

BuchrieserC

RusniokC

AmendA

2001 Comparative genomics of Listeria species. Science 294 849 852

82. BuchrieserC

RusniokC

FrangeulL

CouveE

BillaultA

1999 The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun 67 4851 4861

83. FrangeulL

GlaserP

RusniokC

BuchrieserC

DuchaudE

2004 CAAT-Box, Contigs-Assembly and Annotation tool-box for genome sequencing projects. Bioinformatics 20 790 797

84. VallenetD

LabarreL

RouyZ

BarbeV

BocsS

2006 MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34 53 65

85. ZerbinoDR

BirneyE

2008 Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 821 829

86. DarlingAC

MauB

BlattnerFR

PernaNT

2004 Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14 1394 1403

87. LiH

RuanJ

DurbinR

2008 Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18 1851 1858

88. MilohanicE

GlaserP

CoppeeJY

FrangeulL

VegaY

2003 Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47 1613 1625

89. YangYH

DudoitS

LuuP

LinDM

PengV

2002 Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30 e15

90. DelmarP

RobinS

DaudinJJ

2005 VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data. Bioinformatics 21 502 508

91. ReinerA

YekutieliD

BenjaminiY

2003 Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19 368 375

92. ChainPS

GrafhamDV

FultonRS

FitzgeraldMG

HostetlerJ

2009 Genomics. Genome project standards in a new era of sequencing. Science 326 236 237

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#