#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Proteasome Nuclear Activity Affects Chromosome Stability by Controlling the Turnover of Mms22, a Protein Important for DNA Repair


To expand the known spectrum of genes that maintain genome stability, we screened a recently released collection of temperature sensitive (Ts) yeast mutants for a chromosome instability (CIN) phenotype. Proteasome subunit genes represented a major functional group, and subsequent analysis demonstrated an evolutionarily conserved role in CIN. Analysis of individual proteasome core and lid subunit mutations showed that the CIN phenotype at semi-permissive temperature is associated with failure of subunit localization to the nucleus. The resultant proteasome dysfunction affects chromosome stability by impairing the kinetics of double strand break (DSB) repair. We show that the DNA repair protein Mms22 is required for DSB repair, and recruited to chromatin in a ubiquitin-dependent manner as a result of DNA damage. Moreover, subsequent proteasome-mediated degradation of Mms22 is necessary and sufficient for cell cycle progression through the G2/M arrest induced by DNA damage. Our results demonstrate for the first time that a double strand break repair protein is a proteasome target, and thus link nuclear proteasomal activity and DSB repair.


Vyšlo v časopise: Proteasome Nuclear Activity Affects Chromosome Stability by Controlling the Turnover of Mms22, a Protein Important for DNA Repair. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000852
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000852

Souhrn

To expand the known spectrum of genes that maintain genome stability, we screened a recently released collection of temperature sensitive (Ts) yeast mutants for a chromosome instability (CIN) phenotype. Proteasome subunit genes represented a major functional group, and subsequent analysis demonstrated an evolutionarily conserved role in CIN. Analysis of individual proteasome core and lid subunit mutations showed that the CIN phenotype at semi-permissive temperature is associated with failure of subunit localization to the nucleus. The resultant proteasome dysfunction affects chromosome stability by impairing the kinetics of double strand break (DSB) repair. We show that the DNA repair protein Mms22 is required for DSB repair, and recruited to chromatin in a ubiquitin-dependent manner as a result of DNA damage. Moreover, subsequent proteasome-mediated degradation of Mms22 is necessary and sufficient for cell cycle progression through the G2/M arrest induced by DNA damage. Our results demonstrate for the first time that a double strand break repair protein is a proteasome target, and thus link nuclear proteasomal activity and DSB repair.


Zdroje

1. LengauerC

KinzlerKW

VogelsteinB

1998 Genetic instabilities in human cancers. Nature 396 643 649

2. MyungK

KolodnerRD

2002 Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99 4500 4507

3. BranzeiD

FoianiM

2007 Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst) 6 994 1003

4. KolodnerRD

PutnamCD

MyungK

2002 Maintenance of genome stability in Saccharomyces cerevisiae. Science 297 552 557

5. SymingtonLS

2002 Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66 630 670, table of contents

6. AylonY

KupiecM

2004 DSB repair: the yeast paradigm. DNA Repair (Amst) 3 797 815

7. KroganNJ

LamMH

FillinghamJ

KeoghMC

GebbiaM

2004 Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16 1027 1034

8. LiJ

ZouC

BaiY

WazerDE

BandV

2006 DSS1 is required for the stability of BRCA2. Oncogene 25 1186 1194

9. GudmundsdottirK

LordCJ

WittE

TuttAN

AshworthA

2004 DSS1 is required for RAD51 focus formation and genomic stability in mammalian cells. EMBO Rep 5 989 993

10. HershkoA

CiechanoverA

1998 The ubiquitin system. Annu Rev Biochem 67 425 479

11. NasmythK

2002 Segregating sister genomes: the molecular biology of chromosome separation. Science 297 559 565

12. BrooksCL

GuW

2003 Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15 164 171

13. GilletteTG

HuangW

RussellSJ

ReedSH

JohnstonSA

2001 The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dev 15 1528 1539

14. JelinskySA

EstepP

ChurchGM

SamsonLD

2000 Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20 8157 8167

15. WangQE

WaniMA

ChenJ

ZhuQ

WaniG

2005 Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol Carcinog 42 53 64

16. NgJM

VermeulenW

van der HorstGT

BerginkS

SugasawaK

2003 A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 17 1630 1645

17. HiyamaH

YokoiM

MasutaniC

SugasawaK

MaekawaT

1999 Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 274 28019 28025

18. SugasawaK

OkudaY

SaijoM

NishiR

MatsudaN

2005 UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121 387 400

19. Ben-AroyaS

CoombesC

KwokT

O'DonnellKA

BoekeJD

2008 Toward a Comprehensive Temperature-Sensitive Mutant Repository of the Essential Genes of Saccharomyces cerevisiae. Mol Cell 30 248 258

20. EnenkelC

LehmannA

KloetzelPM

1999 GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol Biol Rep 26 131 135

21. WorthLJr

FrankBL

ChristnerDF

AbsalonMJ

StubbeJ

1993 Isotope effects on the cleavage of DNA by bleomycin: mechanism and modulation. Biochemistry 32 2601 2609

22. RittbergDA

WrightJA

1989 Relationships between sensitivity to hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIO) and ribonucleotide reductase RNR2 mRNA levels in strains of Saccharomyces cerevisiae. Biochem Cell Biol 67 352 357

23. AouidaM

PageN

LeducA

PeterM

RamotarD

2004 A genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Res 64 1102 1109

24. ParsonsAB

BrostRL

DingH

LiZ

ZhangC

2004 Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22 62 69

25. KroghBO

SymingtonLS

2004 Recombination proteins in yeast. Annu Rev Genet 38 233 271

26. McManusKJ

HendzelMJ

2005 ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 16 5013 5025

27. LisbyM

MortensenUH

RothsteinR

2003 Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5 572 577

28. GaczynskaM

OsmulskiPA

2005 Small-molecule inhibitors of proteasome activity. Methods Mol Biol 301 3 22

29. AylonY

LiefshitzB

Bitan-BaninG

KupiecM

2003 Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 23 1403 1417

30. LeeDH

GoldbergAL

1996 Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271 27280 27284

31. YuenKW

WarrenCD

ChenO

KwokT

HieterP

2007 Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci U S A 104 3925 3930

32. HanwayD

ChinJK

XiaG

OshiroG

WinzelerEA

2002 Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc Natl Acad Sci U S A 99 10605 10610

33. ChangM

BellaouiM

BooneC

BrownGW

2002 A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc Natl Acad Sci U S A 99 16934 16939

34. ZaidiIW

RabutG

PovedaA

ScheelH

MalmstromJ

2008 Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep 9 1034 1040

35. MichelJJ

McCarvilleJF

XiongY

2003 A role for Saccharomyces cerevisiae Cul8 ubiquitin ligase in proper anaphase progression. J Biol Chem 278 22828 22837

36. CollinsSR

MillerKM

MaasNL

RoguevA

FillinghamJ

2007 Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446 806 810

37. HanJ

ZhouH

HorazdovskyB

ZhangK

XuRM

2007 Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315 653 655

38. ParksTD

HowardED

WolpertTJ

ArpDJ

DoughertyWG

1995 Expression and purification of a recombinant tobacco etch virus NIa proteinase: biochemical analyses of the full-length and a naturally occurring truncated proteinase form. Virology 210 194 201

39. UhlmannF

WernicD

PoupartMA

KooninEV

NasmythK

2000 Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103 375 386

40. LisbyM

BarlowJH

BurgessRC

RothsteinR

2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699 713

41. GudmundsdottirK

LordCJ

AshworthA

2007 The proteasome is involved in determining differential utilization of double-strand break repair pathways. Oncogene 26 7601 7606

42. MurakawaY

SonodaE

BarberLJ

ZengW

YokomoriK

2007 Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res 67 8536 8543

43. van AttikumH

FritschO

HohnB

GasserSM

2004 Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119 777 788

44. BerginkS

SalomonsFA

HoogstratenD

GroothuisTA

de WaardH

2006 DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev 20 1343 1352

45. MimitouEP

SymingtonLS

2008 Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455 770 774

46. McManusKJ

BarrettIJ

NouhiY

HieterP

2009 Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci U S A 106 3276 3281

47. InbarO

KupiecM

1999 Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 19 4134 4142

48. KoborMS

VenkatasubrahmanyamS

MeneghiniMD

GinJW

JenningsJL

2004 A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2 e131 doi:10.1371/journal.pbio.0020131

49. LiangC

StillmanB

1997 Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev 11 3375 3386

50. McManusKJ

StephensDA

AdamsNM

IslamSA

FreemontPS

2006 The transcriptional regulator CBP has defined spatial associations within interphase nuclei. PLoS Comput Biol 2 e139 doi:10.1371/journal.pcbi.0020139

51. BarberTD

McManusK

YuenKW

ReisM

ParmigianiG

2008 Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A 105 3443 3448

52. CagneyG

UetzP

FieldsS

2000 High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol 328 3 14

53. UetzP

GiotL

CagneyG

MansfieldTA

JudsonRS

2000 A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403 623 627

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#