Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Clade
Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are “hotspots” for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by ∼100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.
Vyšlo v časopise:
Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Clade. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000794
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000794
Souhrn
Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are “hotspots” for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by ∼100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.
Zdroje
1. OnumaY
TakahashiS
AsashimaM
KurataS
GehringWJ
2002 Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proceedings of the National Academy of Sciences of the United States of America 99 2020 2025 doi:10.1073/pnas.022626999
2. MundyNI
2005 A window on the genetics of evolution: MC1R and plumage colouration in birds. Proceedings of the Royal Society B: Biological Sciences 272 1633 1640 doi:10.1098/rspb.2005.3107
3. HoekstraHE
HirschmannRJ
BundeyRA
InselPA
CrosslandJP
2006 A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313 101 4 doi:10.1126/science.1126121
4. NachmanMW
HoekstraHE
D'AgostinoSL
2003 The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A 100 5268 5273 doi:10.1073/pnas.0431157100
5. ColosimoPF
HosemannKE
BalabhadraS
VillarrealG
DicksonM
2005 Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles. Science 307 1928 1933 doi:10.1126/science.1107239
6. ShapiroMD
MarksME
PeichelCL
BlackmanBK
NerengKS
2004 Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428 717 723 doi:10.1038/nature02415
7. SternDL
OrgogozoV
2008 The loci of evolution: How predictable is genetic evolution? Evolution 62 2155 2177 doi:10.1111/j.1558-5646.2008.00450.x
8. JoronM
JigginsCD
PapanicolaouA
McMillanWO
2006 Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity 97 157 67 doi:10.1038/sj.hdy.6800873
9. LanghamGM
2004 Specialized avian predators repeatedly attack novel color morphs of Heliconius butterflies. Evolution 58 2783 7 doi:15696755
10. PapaR
MartinA
ReedRD
2008 Genomic hotspots of adaptation in butterfly wing pattern evolution. Curr Opin Genet Dev 18 559 64 doi:10.1016/j.gde.2008.11.007
11. JoronM
PapaR
BeltránM
ChamberlainN
MavárezJ
2006 A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol 4 e303 doi:10.1371/journal.pbio.0040303
12. CountermanBA
Araujo-PerezF
HinesHM
BaxterSW
MorrisonC
2010 Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet 6 e796 doi:10.1371/journal.pgen.1000796
13. HirschhornJN
DalyMJ
2005 Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6 95 108 doi:nrg1521
14. SavolainenV
AnstettM
LexerC
HuttonI
ClarksonJJ
2006 Sympatric speciation in palms on an oceanic island. Nature 441 210 3 doi:nature04566
15. SchlöttererC
2003 Hitchhiking mapping–functional genomics from the population genetics perspective. Trends Genet 19 32 8 doi:12493246
16. WildingCS
ButlinRK
GrahameJ
2001 Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology 14 611 619 doi:10.1046/j.1420-9101.2001.00304.x
17. BartonNH
2000 Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci 355 1553 62 doi:PMC1692896
18. DabornPJ
YenJL
BogwitzMR
Le GoffG
FeilE
2002 A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science 297 2253 2256 doi:10.1126/science.1074170
19. SchlenkeTA
BegunDJ
2004 Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proceedings of the National Academy of Sciences of the United States of America 101 1626 1631 doi:10.1073/pnas.0303793101
20. MalletJ
BartonNH
1989 Strong natural selection in a warning-color hybrid zone. Evolution 43 421 431
21. MalletJ
1989 The Genetics of Warning Colour in Peruvian Hybrid Zones of Heliconius erato and H. melpomene. Proceedings of the Royal Society of London. Series B, Biological Sciences (1934–1990) 236 163 185
22. BartonNH
GaleKS
1993 Genetic analysis of hybrid zones.
HarrisonRG,
Hybrid Zones and the Evolutionary Process New York Oxford University Press 13 45
23. HarrisonRG
BogdanowiczSM
1997 Patterns of Variation and Linkage Disequilibrium in a Field Cricket Hybrid Zone. Evolution 51 493 505 doi:10.2307/2411122
24. HowardDJ
WaringGL
1991 Topographic diversity, zone width, and the strength of reproductive isolation in a zone of overlap and hybridization. Evolution (USA) 45 1120 1135
25. RaufasteN
OrthA
BelkhirK
SenetD
SmadjaC
2005 Inferences of selection and migration in the Danish house mouse hybrid zone. Biological Journal of the Linnean Society 84 593 616 doi:10.1111/j.1095-8312.2005.00457.x
26. JigginsC
McMillanW
KingP
MalletJ
1997 The maintenance of species differences across a Heliconius hybrid zone. Heredity 79 495 505
27. MalletJ
McMillanWO
JigginsCD
1998 Mimicry and warning colour at the boundary between races and species.
HowardDJ
BerlocherSH
BerlocherDJHSH,
Endless Forms New York Oxford University Press 470 p
28. MalletJ
1986 Dispersal and gene flow in a butterfly with home range behavior: Heliconius erato (Lepidoptera: Nymphalidae). Oecologia 68 210 217 doi:10.1007/BF00384789
29. MalletJ
BartonN
GerardoLM
JoseSC
ManuelMM
1990 Estimates of Selection and Gene Flow from Measures of Cline Width and Linkage Disequilibrium in Heliconius Hybrid Zones. Genetics 124 921
30. KronforstMR
GilbertLE
2008 The population genetics of mimetic diversity in Heliconius butterflies. Proc Biol Sci 275 493 500 doi:10.1098/rspb.2007.1378
31. BaxterSW
PapaR
ChamberlainN
HumphraySJ
JoronM
2008 Convergent evolution in the genetic basis of Müllerian mimicry in heliconius butterflies. Genetics 180 1567 77 doi:10.1534/genetics.107.082982
32. CantarelBL
KorfI
RobbSMC
ParraG
RossE
2008 MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18 188 96 doi:10.1101/gr.6743907
33. FergusonL
Siu FaiLee
ChamberlainN
NadeaN
JoronM
2009 Characterization of a hotspot for mimicry: Assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus. Molecular Ecology In press xx xx
34. KronforstMR
YoungLG
BlumeLM
GilbertLE
2006 Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies. Evolution 60 1254 1268
35. JigginsCD
NaisbitRE
CoeRL
MalletJ
2001 Reproductive isolation caused by colour pattern mimicry. Nature 411 302 5 doi:10.1038/35077075
36. ViaS
WestJ
2008 The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Mol Ecol 17 4334 4345 doi:10.1111/j.1365-294X.2008.03921.x
37. WoodHM
GrahameJW
HumphrayS
RogersJ
ButlinRK
2008 Sequence differentiation in regions identified by a genome scan for local adaptation. Mol Ecol 17 3123 3135 doi:10.1111/j.1365-294X.2008.03755.x
38. FlanaganNS
ToblerA
DavisonA
PybusOG
KapanDD
2004 Historical demography of Müllerian mimicry in the neotropical Heliconius butterflies. Proc Natl Acad Sci U S A 101 9704 9709 doi:10.1073/pnas.0306243101
39. BarretR
SchluterD
n.d. Adaptation from standing genetic variation. Trends in Ecology and Evolution 23 38 44
40. MalletJ
2010 Shift happens! Evolution of warning colour and mimetic diversity in tropical butterflies. Ecological Entomology 35 xxx xxx
41. MalletJ
SingerMC
1987 Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biological Journal of the Linnean Society 32 337 350 doi:10.1111/j.1095-8312.1987.tb00435.x
42. BrownKS
SheppardPM
TurnerJRG
1974 Quaternary Refugia in Tropical America: Evidence from Race Formation in Heliconius Butterflies. Proceedings of the Royal Society of London. Series B, Biological Sciences 187 369 378 doi:10.2307/76410
43. KeysDN
LewisDL
SelegueJE
PearsonBJ
GoodrichLV
1999 Recruitment of a hedgehog Regulatory Circuit in Butterfly Eyespot Evolution. Science 283 532 534 doi:10.1126/science.283.5401.532
44. BrunettiCR
SelegueJE
MonteiroA
FrenchV
BrakefieldPM
2001 The generation and diversification of butterfly eyespot color patterns. Curr Biol 11 1578 85 doi:11676917
45. CarrollS
GatesJ
KeysD
PaddockS
PanganibanG
1994 Pattern formation and eyespot determination in butterfly wings. Science 265 109 114 doi:10.1126/science.7912449
46. GompelN
Prud'hommeB
WittkoppPJ
KassnerVA
CarrollSB
2005 Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433 481 7 doi:10.1038/nature03235
47. JeongS
RebeizM
AndolfattoP
WernerT
TrueJ
2008 The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132 783 93 doi:10.1016/j.cell.2008.01.014
48. BeldadeP
SaenkoSV
PulN
LongAD
2009 A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet 5 e1000366 doi:10.1371/journal.pgen.1000366
49. GoldsteinLS
PhilpAV
1999 The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol 15 141 83 doi:10.1146/annurev.cellbio.15.1.141
50. TekotteH
DavisI
2002 Intracellular mRNA localization: motors move messages. Trends Genet 18 636 42
51. AspengrenS
HedbergD
SköldHN
WallinM
2009 New insights into melanosome transport in vertebrate pigment cells. Int Rev Cell Mol Biol 272 245 302 doi:10.1016/S1937-6448(08)01606-7
52. BoyleRT
McNamaraJC
2008 A Spring-Matrix Model for Pigment Translocation in the Red Ovarian Chromatophores of the Freshwater Shrimp Macrobrachium olfersi (Crustacea, Decapoda). Biol Bull 214 111 121
53. KronforstMR
YoungLG
KapanDD
McNeelyC
O'NeillRJ
2006 Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc Natl Acad Sci U S A 103 6575 80 doi:10.1073/pnas.0509685103
54. GilbertLE
2003 Adaptive novelty through introgression in Heliconius wing patterns: Evidence for shared genetic ‘tool box’ from synthetic hybrid zones and a theory of diversification.
BoggsCL
WattWB
EhrlichPR,
Ecology and Evolution Taking Flight: Butterflies as Model Systems Chicago Univ. of Chicago Press
55. OttoTD
GomesLHF
Alves-FerreiraM
de MirandaAB
DegraveWM
2008 ReRep: Computational detection of repetitive sequences in genome survey sequences(GSS). BMC Bioinformatics 9 366
56. KorfI
2004 Gene finding in novel genomes. BMC Bioinformatics 5 59 doi:10.1186/1471-2105-5-59
57. LewisSE
SearleSMJ
HarrisN
GibsonM
IyerV
2002 Apollo: a sequence annotation editor. Genome Biol 3 1 14
58. RozasJ
Sánchez-DelBarrioJC
MesseguerX
RozasR
2003 DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 2496 7 doi:14668244
59. NeiM
1987 Molecular Evolutionary Genetics. 1st ed Columbia University Press. 512
60. TajimaF
1989 Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123 585 595
61. HudsonRR
SlatkinM
MaddisonWP
1992 Estimation of Levels of Gene Flow From DNA Sequence Data. Genetics 132 583 589
62. WeirBS
1996 Genetic Data Analysis 2: Methods for Discrete Population Genetic Data. 2nd ed Sinauer Associates
63. ArmitageP
1955 Tests for Linear Trends in Proportions and Frequencies. Biometrics 11 375 386 doi:10.2307/3001775
64. ShinJH
BlayS
McNeneyB
GrahamJ
2006 LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria between Single Nucleotide Polymorphisms. Journal of Statistical Software 16 Code Snippet 3
65. FergusonLC
JigginsCD
2009 Shared and divergent expression domains on mimetic Heliconius wings. Evolution & Development 11 498 512 doi:10.1111/j.1525-142X.2009.00358.x
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study in Asian Populations Identifies Variants in and Associated with Systemic Lupus Erythematosus
- Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Genome
- The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling
- Nucleoporins and Transcription: New Connections, New Questions