Uncoupling of Satellite DNA and Centromeric Function in the Genus
In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.
Vyšlo v časopise:
Uncoupling of Satellite DNA and Centromeric Function in the Genus. PLoS Genet 6(2): e32767. doi:10.1371/journal.pgen.1000845
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000845
Souhrn
In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.
Zdroje
1. BrittenRJ
KohneDE
1968 Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161 529 540
2. SzybalskiW
1968 Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol 12B 330 360
3. AllshireRC
KarpenGH
2008 Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9 923 937
4. VoullaireLE
SlaterHR
PetrovicV
ChooKH
1993 A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52 1153 1163
5. MarshallOJ
ChuehCA
LeeH
WongLH
ChooKH
2008 Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82 261 282
6. ChooKH
2000 Centromerization. Trends Cell Biol 10 182 188
7. BrownWR
XuZY
2009 The ‘kinetochore maintenance loop’: the mark of regulation? Bioessays 31 228 236
8. FerreriGC
LiscinskyDM
MackJA
EldridgeMD
O'NeillRJ
2005 Retention of latent centromeres in the mammalian genome. J Hered 96 217 224
9. KasaiF
GarciaC
ArrugaM
Ferguson-SmithMA
2003 Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa): evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102 326 330
10. MontefalconeG
TempestaS
RocchiM
ArchidiaconoN
1999 Centromere repositioning. Genome Res 9 1184 1188
11. VenturaM
ArchidiaconoN
RocchiM
2001 Centromere emergence in evolution. Genome Res 11 595 599
12. CarboneL
NergadzeSG
MagnaniE
MisceoD
CardoneMF
2006 Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87 777 782
13. VenturaM
AntonacciF
CardoneMF
StanyonR
D'AddabboP
2007 Evolutionary formation of new centromeres in macaque. Science 316 243 246
14. AmorDJ
ChooKH
2002 Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71 695 714
15. OakenfullEA
CleggJB
1998 Phylogenetic relationships within the genus Equus and the evolution of alpha and theta globin genes. J Mol Evol 47 772 783
16. RyderOA
EpelNC
BenirschkeK
1978 Chromosome banding studies of the Equidae. Cytogenet Cell Genet 20 323 350
17. YangF
FuB
O'BrienPC
RobinsonTJ
RyderOA
2003 Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102 235 243
18. YangF
FuB
O'BrienPCM
NieW
RyderOA
2004 Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-specieschromosome painting: insight into the occasional fertility of mules. Chromosome Res 12 65 76
19. TrifonovVA
StanyonR
NesterenkoAI
FuB
PerelmanPL
2008 Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16 89 107
20. PirasFM
NergadzeSG
PolettoV
CeruttiF
RyderOA
2009 Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning. Cytogenet Genome Res 126 165 172
21. WadeCM
GiulottoE
SigurdssonS
ZoliM
GnerreS
2009 Genome sequence, comparative analysis and population genetics of the domestic horse (Equus caballus). Science 326 865 867
22. AnglanaM
BertoniL
GiulottoE
1996 Cloning of a polymorphic sequence from the nontranscribed spacer of horse rDNA. Mamm Genome 7 539 541
23. WijersER
ZijlstraC
LenstraJA
1993 Rapid evolution of horse satellite DNA. Genomics 18 113 117
24. SakagamiM
HirotaK
AwataT
YasueH
1994 Molecular cloning of an equine satellite-type DNA sequence and its chromosomal localization. Cytogenet Cell Genet 66 27 30
25. BroadTE
EdeAJ
ForrestJW
LewisPE
PhuaSH
1995a Families of tandemly repeated DNA elements from horse: cloning, nucleotide sequence, and organization. Genome 38 1285 1289
26. BroadTE
ForrestJW
LewisPE
PearcePD
PhuaSH
1995b Cloning of a DNA repeat element from horse: DNA sequence and chromosomal localization. Genome 38 1132 1138
27. MusilovaP
KubickovaS
ZrnovaE
HorinP
VahalaJ
2007 Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Research 15 807 813
28. WichmanHA
PayneCT
RyderOA
HamiltonMJ
MaltbieM
1991 Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Hered 82 369 377
29. ChuehAC
NorthropEL
Brettingham-MooreKH
ChooKH
WongLH
2009 LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5 e1000345 doi:10.1371/journal.pgen.1000354
30. CaroneDM
LongoMS
FerreriGC
HallM
ShookN
2009 A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118(1) 113 125
31. MisceoD
CardoneMF
CarboneL
D'AddabboP
de JongPJ
2005 Evolutionary history of chromosome 20. Mol Biol Evol 22 360 366
32. SambrookJ
FritschEF
ManiatisT
1989 Molecular cloning: A laboratory manual, 2nd edition. Cold Spring Harbor Laboratory Press. E. 3
33. NergadzeSG
MagnaniE
AttoliniC
BertoniL
AdelsonDL
2006 Assignment of the Equus caballus interleukin 8 gene (IL8) to chromosome 3q14.2/q14.3 by in situ hybridization. Cytogenet Genome Res 112 341B
34. SafferyR
IrvineDV
GriffithsB
KalitsisP
ChooKH
2000 Components of the human spindle checkpoint control mechanism localize specifically to the active centromere on dicentric chromosomes. Hum Genet 107 376 384
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Genome-Wide Association Study in Asian Populations Identifies Variants in and Associated with Systemic Lupus Erythematosus
- Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Genome
- The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling
- Nucleoporins and Transcription: New Connections, New Questions