Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of
Seed development in angiosperms is dependent on the interplay among different transcriptional programs operating in the embryo, the endosperm, and the maternally-derived seed coat. In angiosperms, the embryo and the endosperm are products of double fertilization during which the two pollen sperm cells fuse with the egg cell and the central cell of the female gametophyte. In Arabidopsis, analyses of mutants in the cell-cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) have revealed the importance of a paternal genome for the effective development of the endosperm and ultimately the seed. Here we have exploited cdka;1 fertilization as a novel tool for the identification of seed regulators and factors involved in parent-of-origin–specific regulation during seed development. We have generated genome-wide transcription profiles of cdka;1 fertilized seeds and identified approximately 600 genes that are downregulated in the absence of a paternal genome. Among those, AGAMOUS-LIKE (AGL) genes encoding Type-I MADS-box transcription factors were significantly overrepresented. Here, AGL36 was chosen for an in-depth study and shown to be imprinted. We demonstrate that AGL36 parent-of-origin–dependent expression is controlled by the activity of METHYLTRANSFERASE1 (MET1) maintenance DNA methyltransferase and DEMETER (DME) DNA glycosylase. Interestingly, our data also show that the active maternal allele of AGL36 is regulated throughout endosperm development by components of the FIS Polycomb Repressive Complex 2 (PRC2), revealing a new type of dual epigenetic regulation in seeds.
Vyšlo v časopise:
Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1001303
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001303
Souhrn
Seed development in angiosperms is dependent on the interplay among different transcriptional programs operating in the embryo, the endosperm, and the maternally-derived seed coat. In angiosperms, the embryo and the endosperm are products of double fertilization during which the two pollen sperm cells fuse with the egg cell and the central cell of the female gametophyte. In Arabidopsis, analyses of mutants in the cell-cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) have revealed the importance of a paternal genome for the effective development of the endosperm and ultimately the seed. Here we have exploited cdka;1 fertilization as a novel tool for the identification of seed regulators and factors involved in parent-of-origin–specific regulation during seed development. We have generated genome-wide transcription profiles of cdka;1 fertilized seeds and identified approximately 600 genes that are downregulated in the absence of a paternal genome. Among those, AGAMOUS-LIKE (AGL) genes encoding Type-I MADS-box transcription factors were significantly overrepresented. Here, AGL36 was chosen for an in-depth study and shown to be imprinted. We demonstrate that AGL36 parent-of-origin–dependent expression is controlled by the activity of METHYLTRANSFERASE1 (MET1) maintenance DNA methyltransferase and DEMETER (DME) DNA glycosylase. Interestingly, our data also show that the active maternal allele of AGL36 is regulated throughout endosperm development by components of the FIS Polycomb Repressive Complex 2 (PRC2), revealing a new type of dual epigenetic regulation in seeds.
Zdroje
1. NowackMK
UngruA
BjerkanKN
GriniPE
SchnittgerA
2010 Reproductive cross-talk: seed development in flowering plants. Biochem Soc Trans 38 604 612
2. FeilR
BergerF
2007 Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23 192 199
3. JullienPE
BergerF
2009 Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12 637 642
4. LinBY
1984 Ploidy Barrier to Endosperm Development in Maize. Genetics 107 103 115
5. ScottRJ
SpielmanM
BaileyJ
DickinsonHG
1998 Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125 3329 3341
6. HaigD
WestobyM
1991 Genomic Imprinting in Endosperm: Its Effect on Seed Development in Crosses between Species, and between Different Ploidies of the Same Species, and Its Implications for the Evolution of Apomixis. Philosophical Transactions: Biological Sciences 333 1 13
7. DeChiaraTM
EfstratiadisA
RobertsonEJ
1990 A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345 78 80
8. FilsonAJ
LouviA
EfstratiadisA
RobertsonEJ
1993 Rescue of the T-associated maternal effect in mice carrying null mutations in Igf-2 and Igf2r, two reciprocally imprinted genes. Development 118 731 736
9. LauMM
StewartCE
LiuZ
BhattH
RotweinP
1994 Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev 8 2953 2963
10. LeightonPA
IngramRS
EggenschwilerJ
EfstratiadisA
TilghmanSM
1995 Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375 34 39
11. KinoshitaT
MiuraA
ChoiY
KinoshitaY
CaoX
2004 One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303 521 523
12. LawrenceRJ
EarleyK
PontesO
SilvaM
ChenZJ
2004 A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13 599 609
13. GrossniklausU
Vielle-CalzadaJP
HoeppnerMA
GaglianoWB
1998 Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280 446 450
14. ChaudhuryAM
MingL
MillerC
CraigS
DennisES
1997 Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94 4223 4228
15. OhadN
MargossianL
HsuYC
WilliamsC
RepettiP
1996 A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci U S A 93 5319 5324
16. KohlerC
HennigL
BouveretR
GheyselinckJ
GrossniklausU
2003 Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. Embo J 22 4804 4814
17. GuittonAE
PageDR
ChambrierP
LionnetC
FaureJE
2004 Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131 2971 2981
18. TiwariS
SchulzR
IkedaY
DythamL
BravoJ
2008 MATERNALLY EXPRESSED PAB C-TERMINAL, a novel imprinted gene in Arabidopsis, encodes the conserved C-terminal domain of polyadenylate binding proteins. Plant Cell 20 2387 2398
19. JullienPE
KinoshitaT
OhadN
BergerF
2006 Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18 1360 1372
20. AdamsS
VinkenoogR
SpielmanM
DickinsonHG
ScottRJ
2000 Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 127 2493 2502
21. JohnstonAJ
MatveevaE
KirioukhovaO
GrossniklausU
GruissemW
2008 A Dynamic Reciprocal RBR-PRC2 Regulatory Circuit Controls Arabidopsis Gametophyte Development. Curr Biol 18 1680 1686
22. JullienP
MosqunaA
IngouffM
SakataT
OhadN
2008 Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6 e194 doi:10.1371/journal.pbio.0060194
23. GehringM
ReikW
HenikoffS
2009 DNA demethylation by DNA repair. Trends Genet 25 82 90
24. ChoiY
GehringM
JohnsonL
HannonM
HaradaJJ
2002 DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110 33 42
25. BarouxC
GagliardiniV
PageDR
GrossniklausU
2006 Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev 20 1081 1086
26. Fitz GeraldJN
HuiPS
BergerF
2009 Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana. Development 136 3399 3404
27. JullienPE
KatzA
OlivaM
OhadN
BergerF
2006 Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16 486 492
28. KinoshitaT
YadegariR
HaradaJJ
GoldbergRB
FischerRL
1999 Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11 1945 1952
29. KohlerC
HennigL
SpillaneC
PienS
GruissemW
2003 The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17 1540 1553
30. MakarevichG
LeroyO
AkinciU
SchubertD
ClarenzO
2006 Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7 947 952
31. ScottRJ
SpielmanM
2006 Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 113 53 67
32. KinoshitaY
SazeH
KinoshitaT
MiuraA
SoppeWJ
2007 Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49 38 45
33. LuoM
BilodeauP
DennisES
PeacockWJ
ChaudhuryA
2000 Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 97 10637 10642
34. TiwariS
SpielmanM
DayRC
ScottRJ
2006 Proliferative phase endosperm promoters from Arabidopsis thaliana. Plant Biotechnol J 4 393 407
35. GehringM
BubbKL
HenikoffS
2009 Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324 1447 1451
36. IslesAR
HollandAJ
2005 Imprinted genes and mother-offspring interactions. Early Hum Dev 81 73 77
37. MorisonIM
RamsayJP
SpencerHG
2005 A census of mammalian imprinting. Trends Genet 21 457 465
38. ReikW
LewisA
2005 Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6 403 410
39. WoodAJ
OakeyRJ
2006 Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2 e147 doi:10.1371/journal.pgen.0020147
40. NowackMK
GriniPE
JakobyMJ
LafosM
KonczC
2006 A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38 63 67
41. IwakawaH
ShinmyoA
SekineM
2006 Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 45 819 831
42. AwSJ
HamamuraY
ChenZ
SchnittgerA
BergerF
2010 Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 137 2683 2690
43. NowackMK
ShirzadiR
DissmeyerN
DolfA
EndlE
2007 Bypassing genomic imprinting allows seed development. Nature 447 312 315
44. LeBH
ChengC
BuiAQ
WagmaisterJA
HenryKF
2010 Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci U S A 107 8063 8070
45. de FolterS
ImminkRG
KiefferM
ParenicovaL
HenzSR
2005 Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17 1424 1433
46. KangIH
SteffenJG
PortereikoMF
LloydA
DrewsGN
2008 The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20 635 647
47. ParenicovaL
de FolterS
KiefferM
HornerDS
FavalliC
2003 Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15 1538 1551
48. RiosG
LossowA
HertelB
BreuerF
SchaeferS
2002 Rapid identification of Arabidopsis insertion mutants by non-radioactive detection of T-DNA tagged genes. Plant J 32 243 253
49. GriniPE
SchnittgerA
SchwarzH
ZimmermannI
SchwabB
1999 Isolation of ethyl methanesulfonate-induced gametophytic mutants in Arabidopsis thaliana by a segregation distortion assay using the multimarker chromosome 1. Genetics 151 849 863
50. CaoX
JacobsenSE
2002 Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99 Suppl 4 16491 16498
51. JacksonJP
LindrothAM
CaoX
JacobsenSE
2002 Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416 556 560
52. ChanSW
ZilbermanD
XieZ
JohansenLK
CarringtonJC
2004 RNA silencing genes control de novo DNA methylation. Science 303 1336
53. JeddelohJA
StokesTL
RichardsEJ
1999 Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22 94 97
54. DayRC
HerridgeRP
AmbroseBA
MacknightRC
2008 Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148 1964 1984
55. JullienPE
BergerF
2010 Parental genome dosage imbalance deregulates imprinting in Arabidopsis. PLoS Genet 6 e1000885 doi:10.1371/journal.pgen.1000885
56. KohlerC
PageDR
GagliardiniV
GrossniklausU
2005 The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37 28 30
57. BeckerA
TheissenG
2003 The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29 464 489
58. KofujiR
SumikawaN
YamasakiM
KondoK
UedaK
2003 Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20 1963 1977
59. BemerM
Wolters-ArtsM
GrossniklausU
AngenentGC
2008 The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. Plant Cell 20 2088 2101
60. PortereikoMF
LloydA
SteffenJG
PunwaniJA
OtsugaD
2006 AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18 1862 1872
61. ColomboM
MasieroS
VanzulliS
LardelliP
KaterMM
2008 AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54 1037 1048
62. SteffenJG
KangIH
PortereikoMF
LloydA
DrewsGN
2008 AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol 148 259 268
63. De BodtS
RaesJ
FlorquinK
RombautsS
RouzeP
2003 Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56 573 586
64. JosefssonC
DilkesB
ComaiL
2006 Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16 1322 1328
65. WaliaH
JosefssonC
DilkesB
KirkbrideR
HaradaJ
2009 Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 19 1128 1132
66. ErilovaA
BrownfieldL
ExnerV
RosaM
TwellD
2009 Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5 e1000663 doi:10.1371/journal.pgen.1000663
67. ZhangX
YazakiJ
SundaresanA
CokusS
ChanSW
2006 Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell 126 1189 1201
68. YadegariR
KinoshitaT
LotanO
CohenG
KatzA
2000 Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12 2367 2382
69. HsiehTF
IbarraCA
SilvaP
ZemachA
Eshed-WilliamsL
2009 Genome-wide demethylation of Arabidopsis endosperm. Science 1451 1454
70. BarlowDP
1993 Methylation and imprinting: from host defense to gene regulation? Science 260 309 310
71. ChanSW
ZhangX
BernatavichuteYV
JacobsenSE
2006 Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4 e363 doi:10.1371/journal.pbio.0040363
72. MosherRA
MelnykCW
KellyKA
DunnRM
StudholmeDJ
2009 Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460 283 286
73. ZhangX
ClarenzO
CokusS
BernatavichuteYV
PellegriniM
2007 Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5 e129 doi:10.1371/journal.pbio.0050129
74. MakarevichG
VillarC
ErilovaA
KohlerC
2008 Mechanism of PHERES1 imprinting in Arabidopsis. Journal of Cell Science 121 906 912
75. NgoQA
MooreJM
BaskarR
GrossniklausU
SundaresanV
2007 Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles. Development 134 4107 4117
76. SazeH
Mittelsten ScheidO
PaszkowskiJ
2003 Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34 65 69
77. WangD
TysonMD
JacksonSS
YadegariR
2006 Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis. Proc Natl Acad Sci U S A 103 13244 13249
78. ZilbermanD
CaoX
JacobsenSE
2003 ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299 716 719
79. GoodrichJ
PuangsomleeP
MartinM
LongD
MeyerowitzEM
1997 A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386 44 51
80. LindrothAM
CaoX
JacksonJP
ZilbermanD
McCallumCM
2001 Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292 2077 2080
81. CaoX
JacobsenSE
2002 Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12 1138 1144
82. MurashigeT
SkoogF
1962 A rewised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15 473 497
83. YangYH
DudoitS
LuuP
LinDM
PengV
2002 Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30 e15
84. SmythGK
2004 Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 1 25
85. StoreyJD
2002 A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64 479 498
86. HulsenT
de VliegJ
AlkemaW
2008 BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9 488
87. CurtisMD
GrossniklausU
2003 A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133 462 469
88. BentA
2006 Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343 87 103
89. HuangS
AnYQ
McDowellJM
McKinneyEC
MeagherRB
1997 The Arabidopsis thaliana ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol Biol 33 125 139
90. PfafflMW
2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 e45
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci
- MiRNA Control of Vegetative Phase Change in Trees
- The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs
- Break to Make a Connection