#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Targeted Sister Chromatid Cohesion by Sir2


The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together, these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme's role as a histone deacetylase.


Vyšlo v časopise: Targeted Sister Chromatid Cohesion by Sir2. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1002000
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002000

Souhrn

The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together, these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme's role as a histone deacetylase.


Zdroje

1. SchüleBOviedoAJohnstonKPaiSFranckeU 2005 Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Hum Genet 77 1117 1128

2. VegaHWaisfiszQGordilloMSakaiNYanagiharaI 2005 Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37 468 470

3. BarberTDMcManusKYuenKWReisMParmigianiG 2008 Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A 105 3443 3448

4. ZhangNGeGMeyerRSethiSBasuD 2008 Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A 105 13033 13038

5. OnnIHeidinger-PauliJMGuacciVUnalEKoshlandDE 2008 Sister chromatid cohesion: a simple concept with a complex reality. Ann Rev Cell Dev Biol 24 105 129

6. NasmythKHaeringCH 2009 Cohesin: its roles and mechanisms. Annu Rev Genet 43 525 558

7. HaeringCHFarcasAMArumugamPMetsonJNasmythK 2008 The cohesin ring concatenates sister DNA molecules. Nature 454 297 301

8. MilutinovichMKoshlandDE 2003 SMC complexes-wrapped up in controversy. Science 300 1101 1102

9. ChangCRWuCSHomYGartenbergMR 2005 Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19 3031 3042

10. ZhangNKuznetsovSGSharanSKLiKRaoPH 2008 A handcuff model for the cohesin complex. J Cell Biol 183 1019 1031

11. LengronneAKatouYMoriSYokobayashiSKellyGP 2004 Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430 573 578

12. GlynnEFMegeePCYuHGMistrotCUnalE 2004 Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2 e259 doi:10.1371/journal.pbio.0020259

13. BauschCNooneSHenryJMGaudenzKSandersonB 2007 Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27 8522 8532

14. MisulovinZSchwartzYBLiXYKahnTGGauseM 2008 Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117 89 102

15. ParelhoVHadjurSSpivakovMLeleuMSauerS 2008 Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132 422 433

16. WendtKSYoshidaKItohTBandoMKochB 2008 Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451 796 801

17. BernardPMaureJFPartridgeJFGenierSJaverzatJP 2001 Requirement of heterochromatin for cohesion at centromeres. Science 294 2539 2542

18. NonakaNKitajimaTYokobayashiSXiaoGYamamotoM 2002 Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat Cell Biol 4 89 93

19. YamagishiYSakunoTShimuraMWatanabeY 2008 Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455 251 255

20. RuschéLNKirchmaierALRineJ 2003 The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Ann Rev Biochem 72 481 516

21. DonzeDAdamsCRRineJKamakakaRT 1999 The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes & Dev 13 698 708

22. DubeyRNGartenbergMR 2007 A tDNA establishes cohesion of a neighboring silent chromatin domain. Genes Dev 21 2150 2160

23. D'AmbrosioCSchmidtCKKatouYKellyGItohT 2008 Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22 2215 2227

24. KogutIWangJGuacciVMistryRKMegeePC 2009 The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev 23 2345 2357

25. LiY-CChengT-HGartenbergMR 2001 Establishment of transcriptional silencing in the absence of DNA replication. Science 291 650 653

26. ChienC-TBuckSSternglanzRShoreD 1993 Targeting of Sir1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75 531 541

27. ShermanJMStoneEMFreeman-CookLLBrachmannCBBoekeJD 1999 The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell 10 3045 3059

28. SauveAAWolbergerCSchrammVLBoekeJD 2006 The biochemistry of sirtuins. Annu Rev Biochem 75 435 465

29. CockellMMPerrodSGasserSM 2000 Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics 154 1069 1083

30. LiebJDLiuXBotsteinDBrownPO 2001 Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28 327 334

31. GartenbergMRNeumannFNLarocheTBlaszczykMGasserSM 2004 Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119 955 967

32. ArmstrongCMKaeberleinMImaiSIGuarenteL 2002 Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity. Mol Biol Cell 13 1427 1438

33. HoppeGJTannyJCRudnerADGerberSADanaieS 2002 Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22 4167 4180

34. XieJPierceMGailus-DurnerVWagnerMWinterE 1999 Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO 18 6448 6454

35. BedalovAHiraoMPosakonyJNelsonMSimonJA 2003 NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol 23 7044 7054

36. LiMPetteysBJMcClureJMValsakumarVBekiranovS 2010 Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 30 3329 3341

37. RuschéLNRineJ 2001 Conversion of a gene-specific repressor to a regional silencer. Genes Dev 15 955 967

38. ZhaoKChaiXClementsAMarmorsteinR 2003 Structure and autoregulation of the yeast Hst2 homolog of Sir2. Nat Struct Biol 10 864 871

39. CubizollesFMartinoFPerrodSGasserSM 2006 A homotrimer-heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing. Mol Cell 21 825 836

40. ChouCCLiYCGartenbergMR 2008 Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing. Mol Cell 31 650 659

41. GottliebSEspositoRE 1989 A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56 771 776

42. SmithJSBoekeJD 1997 An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11 241 254

43. BrykMBanerjeeMMurphyMKnudsonKEGarfinkelDJ 1997 Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 11 255 269

44. KobayashiTHoriuchiTTongaonkarPVuLNomuraM 2004 SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117 441 453

45. KobayashiTGanleyAR 2005 Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309 1581 1584

46. StraightAFShouWDowdGJTurckCWDeshaiesRJ 1999 Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97 245 256

47. HuangJMoazedD 2003 Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17 2162 2176

48. KasulkeDSeitzSEhrenhofer-MurrayAE 2002 A role for the Saccharomyces cerevisiae RENT complex protein Net1 in HMR silencing. Genetics 161 1411 1423

49. CuperusGShafaatianRShoreD 2000 Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO 19 2641 2651

50. TothARabitschKPGalovaMSchleifferABuonomoSB 2000 Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103 1155 1168

51. RabitschKPPetronczkiMJaverzatJPGenierSChwallaB 2003 Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 4 535 548

52. HuangJBritoILVillenJGygiSPAmonA 2006 Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev 20 2887 2901

53. LauABlitzblauHBellSP 2002 Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae. Genes & Dev 16 2935 2945

54. BoseTGertonJL 2010 Cohesinopathies, gene expression, and chromatin organization. J Cell Biol 189 201 210

55. KageyMHNewmanJJBilodeauSZhanYOrlandoDA 2010 Mediator and cohesin connect gene expression and chromatin architecture. Nature 467 430 435

56. HadjurSWilliamsLMRyanNKCobbBSSextonT 2009 Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460 410 413

57. NativioRWendtKSItoYHuddlestonJEUribe-LewisS 2009 Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 5 e1000739 doi:10.1371/journal.pgen.1000739

58. MishiroTIshiharaKHinoSTsutsumiSAburataniH 2009 Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J 28 1234 1245

59. HouCDaleRDeanA 2010 Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci U S A 107 3651 3656

60. ValenzuelaLDhillonNDubeyRNGartenbergMRKamakakaRT 2008 Long-range communication between the silencers of HMR. Mol Cell Biol 28 1924 1935

61. MieleABystrickyKDekkerJ 2009 Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet 5 e1000478 doi:10.1371/journal.pgen.1000478

62. IdeSMiyazakiTMakiHKobayashiT 2010 Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327 693 696

63. Ben-ShaharTRHeegerSLehaneCEastPFlynnH 2008 Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321 563 566

64. UnalEHeidinger-PauliJMKimWGuacciVOnnI 2008 A molecular determinant for the establishment of sister chromatid cohesion. Science 321 566 569

65. ZhangJShiXLiYKimBJJiaJ 2008 Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31 143 151

66. RowlandBDRoigMBNishinoTKurzeAUluocakP 2009 Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol Cell 33 763 774

67. BorgesVLehaneCLopez-SerraLFlynnHSkehelM 2010 Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol Cell 39 677 688

68. BeckouetFHuBRoigMBSutaniTKomataM 2010 An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol Cell 39 689 699

69. XiongBLuSGertonJL 2010 Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol 20 1660 1665

70. Heidinger-PauliJMUnalEKoshlandD 2009 Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell 34 311 321

71. HaigisMCSinclairDA 2010 Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5 253 295

72. TennenRIChuaKF 2010 Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci

73. UnalEArbel-EdenASattlerUShroffRLichtenM 2004 DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16 991 1002

74. StromLLindroosHBShirahigeKSjogrenC 2004 Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16 1003 1015

75. KaidiAWeinertBTChoudharyCJacksonSP 2010 Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329 1348 1353

76. TaddeiAHedigerFNeumannFRBauerCGasserSM 2004 Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23 1301 1312

77. HolmesSGRoseABSteuerleKSaezESayeghS 1997 Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145 605 614

78. LarkinMABlackshieldsGBrownNPChennaRMcGettiganPA 2007 Clustal W and Clustal X version 2.0. Bioinformatics 23 2947 2948

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#