Lipophorin Receptors Mediate the Uptake of Neutral Lipids in Oocytes and Imaginal Disc Cells by an Endocytosis-Independent Mechanism
Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2), two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR) family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR–like proteins in this process.
Vyšlo v časopise:
Lipophorin Receptors Mediate the Uptake of Neutral Lipids in Oocytes and Imaginal Disc Cells by an Endocytosis-Independent Mechanism. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1001297
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001297
Souhrn
Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2), two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR) family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR–like proteins in this process.
Zdroje
1. KopelmanPG
2000 Obesity as a medical problem. Nature 404 635 643
2. BarshGS
SchwartzMW
2002 Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3 589 600
3. BakerKD
ThummelCS
2007 Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6 257 266
4. BharuchaKN
2009 The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatr Res 65 132 137
5. LeopoldP
PerrimonN
2007 Drosophila and the genetics of the internal milieu. Nature 450 186 188
6. SchlegelA
StainierDYR
2007 Lessons from "lower" organisms: what worms, flies, and zebrafish can teach us about human energy metabolism. PLoS Genet 3 e199 doi:10.1371/journal.pgen.0030199
7. VanceD
VanceJ
2002 Biochemistry of lipids, lipoproteins and membranes;
VanceD
VanceJ
Amsterdam Elsevier Science
8. CanavosoLE
JouniZE
KarnasKJ
PenningtonJE
WellsMA
2001 Fat metabolism in insects. Annu Rev Nutr 21 23 46
9. Van der HorstDJ
RoosendaalSD
RodenburgKW
2009 Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 326 105 119
10. KuttyRK
KuttyG
KambadurR
DuncanT
KooninEV
1996 Molecular characterization and developmental expression of a retinoid- and fatty acid-binding glycoprotein from Drosophila. A putative lipophorin. J Biol Chem 271 20641 20649
11. CallejoA
CuliJ
GuerreroI
2008 Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci U S A 105 912 917
12. van der HorstDJ
van HoofD
van MarrewijkWJ
RodenburgKW
2002 Alternative lipid mobilization: the insect shuttle system. Mol Cell Biochem 239 113 119
13. BrownMS
GoldsteinJL
1986 A receptor-mediated pathway for cholesterol homeostasis. Science 232 34 47
14. DantumaNP
PottersM
De WintherMP
TensenCP
KooimanFP
1999 An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J Lipid Res 40 973 978
15. Van HoofD
RodenburgKW
van der HorstDJ
2003 Lipophorin receptor-mediated lipoprotein endocytosis in insect fat body cells. J Lipid Res 44 1431 1440
16. Van HoofD
RodenburgKW
Van der HorstDJ
2005 Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. Insect Biochem Mol Biol 35 117 128
17. RodenburgKW
Van der HorstDJ
2005 Lipoprotein-mediated lipid transport in insects: analogy to the mammalian lipid carrier system and novel concepts for the functioning of LDL receptor family members. Biochim Biophys Acta 1736 10 29
18. SchneiderWJ
NimpfJ
2003 LDL receptor relatives at the crossroad of endocytosis and signaling. Cell Mol Life Sci 60 892 903
19. StapletonM
LiaoG
BroksteinP
HongL
CarninciP
2002 The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. Genome Res 12 1294 1300
20. HillerK
GroteA
ScheerM
MünchR
JahnD
2004 PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32 W375 379
21. SpradlingAC
1993 Developmental genetics of oogenesis.
BateM
AriasAM
The Development of Drosophila melanogaster Cold Spring Harbor Laboratory Press 1, 70
22. SchonbaumCP
LeeS
MahowaldAP
1995 The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily. Proc Natl Acad Sci U S A 92 1485 1489
23. SchonbaumCP
PerrinoJJ
MahowaldAP
2000 Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis. Mol Biol Cell 11 511 521
24. McCallK
2004 Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274 3 14
25. TerashimaJ
TakakiK
SakuraiS
BownesM
2005 Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J Endocrinol 187 69 79
26. FaunyJD
SilberJ
ZiderA
2005 Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs. Dev Dyn 232 725 732
27. KhaliullinaH
PanákováD
EugsterC
RiedelF
CarvalhoM
2009 Patched regulates Smoothened trafficking using lipoprotein-derived lipids. Development 136 4111 4121
28. StricklandDK
GoniasSL
ArgravesWS
2002 Diverse roles for the LDL receptor family. Trends Endocrinol Metab 13 66 74
29. MorrisonHA
DionneH
RustenTE
BrechA
FisherWW
2008 Regulation of early endosomal entry by the Drosophila tumor suppressors Rabenosyn and Vps45. Mol Biol Cell 19 4167 4176
30. CompagnonJ
GervaisL
RomanMS
Chamot-BoeufS
GuichetA
2009 Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in the Drosophila germline. J Cell Sci 122 25 35
31. ZerialM
McBrideH
2001 Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2 107 117
32. PospisilikJA
SchramekD
SchnidarH
CroninSJF
NehmeNT
2010 Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140 148 160
33. Al-AnziB
SapinV
WatersC
ZinnK
WymanRJ
2009 Obesity-blocking neurons in Drosophila. Neuron 63 329 341
34. BellerM
SztalrydC
SouthallN
BellM
JäckleH
2008 COPI complex is a regulator of lipid homeostasis. PLoS Biol 6 e292 doi:10.1371/journal.pbio.0060292
35. GronkeS
MildnerA
FellertS
TennagelsN
PetryS
2005 Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1 323 330
36. GuoY
WaltherTC
RaoM
StuurmanN
GoshimaG
2008 Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453 657 661
37. Guidugli-LazzariniKR
do NascimentoAM
TanakaED
PiulachsMD
HartfelderK
2008 Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers. J Insect Physiol 54 1138 1147
38. CheonHM
SeoSJ
SunJ
SappingtonTW
RaikhelAS
2001 Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. Insect Biochem Mol Biol 31 753 760
39. CiudadL
BellésX
PiulachsM
2007 Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol 8 53
40. GopalapillaiR
Kadono-OkudaK
TsuchidaK
YamamotoK
NohataJ
2006 Lipophorin receptor of Bombyx mori: cDNA cloning, genomic structure, alternative splicing, and isolation of a new isoform. J Lipid Res 47 1005 1013
41. LeeCS
HanJH
KimBS
LeeSM
HwangJS
2003 Wax moth, Galleria mellonella, high density lipophorin receptor: alternative splicing, tissue-specific expression, and developmental regulation. Insect Biochem Mol Biol 33 761 771
42. DantumaNP
PijnenburgMA
DiederenJH
Van der HorstDJ
1997 Developmental down-regulation of receptor-mediated endocytosis of an insect lipoprotein. J Lipid Res 38 254 265
43. Guidugli-LazzariniKR
do NascimentoAM
TanakaED
PiulachsMD
HartfelderK
2008 Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers. Journal of insect physiology 54 1138 1147
44. SeoS-J
CheonH-M
SunJ
SappingtonTW
RaikhelAS
2003 Tissue- and stage-specific expression of two lipophorin receptor variants with seven and eight ligand-binding repeats in the adult mosquito. The Journal of biological chemistry 278 41954 41962
45. SoukupSF
CuliJ
GubbD
2009 Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1. PLoS Genet 5 e1000532 doi:10.1371/journal.pgen.1000532
46. De GregorioE
SpellmanPT
RubinGM
LemaitreB
2001 Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98 12590 12595
47. FerrandonD
ImlerJL
HetruC
HoffmannJA
2007 The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7 862 874
48. SeoSJ
CheonHM
SunJ
SappingtonTW
RaikhelAS
2003 Tissue- and stage-specific expression of two lipophorin receptor variants with seven and eight ligand-binding repeats in the adult mosquito. J Biol Chem 278 41954 41962
49. MagranéJ
Casaroli-MaranoRP
ReinaM
GåfvelsM
VilaróS
1999 The role of O-linked sugars in determining the very low density lipoprotein receptor stability or release from the cell. FEBS Lett 451 56 62
50. MayP
BockHH
NimpfJ
HerzJ
2003 Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. The Journal of biological chemistry 278 37386 37392
51. BrandesC
KahrL
StockingerW
HiesbergerT
SchneiderWJ
2001 Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not alpha 2-macroglobulin. J Biol Chem 276 22160 22169
52. SakaiK
TiebelO
LjungbergMC
SullivanM
LeeH-J
2009 A neuronal VLDLR variant lacking the third complement-type repeat exhibits high capacity binding of apoE containing lipoproteins. Brain Res 1276 11 21
53. SeppKJ
HongP
LizarragaSB
LiuJS
MejiaLA
2008 Identification of neural outgrowth genes using genome-wide RNAi. PLoS Genet 4 e1000111 doi:10.1371/journal.pgen.1000111
54. ZieglerR
Van AntwerpenR
2006 Lipid uptake by insect oocytes. Insect Biochem Mol Biol 36 264 272
55. BuszczakM
LuX
SegravesWA
ChangTY
CooleyL
2002 Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase. Genetics 160 1511 1518
56. ThomsonTC
JohnsonJ
2010 Inducible somatic oocyte destruction in response to rapamycin requires wild-type regulation of follicle cell epithelial polarity. Cell Death Differ 17 1717 1727
57. HussainMM
StricklandDK
BakillahA
1999 The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19 141 172
58. Van der HorstDJ
1990 Lipid transport function of lipoproteins in flying insects. Biochim Biophys Acta 1047 195 211
59. Dallinga-ThieGM
FranssenR
MooijHL
VisserME
HassingHC
2010 The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 211 1 8
60. DaviesBS
BeigneuxAP
BarnesRH2nd
TuY
GinP
2010 GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries. Cell Metab 12 42 52
61. BeigneuxAP
DaviesBS
GinP
WeinsteinMM
FarberE
2007 Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5 279 291
62. ObunikeJC
LutzEP
LiZ
PakaL
KatopodisT
2001 Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. The Journal of biological chemistry 276 8934 8941
63. TackenPJ
HofkerMH
HavekesLM
van DijkKW
2001 Living up to a name: the role of the VLDL receptor in lipid metabolism. Curr Opin Lipidol 12 275 279
64. GoudriaanJR
Espirito SantoSM
VosholPJ
TeusinkB
van DijkKW
2004 The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J Lipid Res 45 1475 1481
65. TackenPJ
TeusinkB
JongMC
HaratsD
HavekesLM
2000 LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res 41 2055 2062
66. FrykmanPK
BrownMS
YamamotoT
GoldsteinJL
HerzJ
1995 Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci U S A 92 8453 8457
67. ParksAL
CookKR
BelvinM
DompeNA
FawcettR
2004 Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36 288 292
68. ThibaultST
SingerMA
MiyazakiWY
MilashB
DompeNA
2004 A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36 283 287
69. XuT
RubinGM
1993 Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117 1223 1237
70. ChouTB
NollE
PerrimonN
1993 Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119 1359 1369
71. BendtsenJD
NielsenH
von HeijneG
BrunakS
2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795
72. StriginiM
CohenSM
2000 Wingless gradient formation in the Drosophila wing. Curr Biol 10 293 300
73. YakobyN
BristowCA
GongD
SchaferX
LembongJ
2008 A combinatorial code for pattern formation in Drosophila oogenesis. Dev Cell 15 725 737
74. StapletonM
CarlsonJ
BroksteinP
YuC
ChampeM
2002 A Drosophila full-length cDNA resource. Genome Biol 3 RESEARCH0080
75. BrandAH
PerrimonN
1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118 401 415
76. BischofJ
MaedaRK
HedigerM
KarchF
BaslerK
2007 An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104 3312 3317
77. RorthP
1998 Gal4 in the Drosophila female germline. Mech Dev 78 113 118
78. QueenanAM
GhabrialA
SchupbachT
1997 Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development 124 3871 3880
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 2
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci
- MiRNA Control of Vegetative Phase Change in Trees
- The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs
- Break to Make a Connection