The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs
The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders.
Vyšlo v časopise:
The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1001313
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001313
Souhrn
The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders.
Zdroje
1. MolkentinJD
LinQ
DuncanSA
OlsonEN
1997 Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11 1061 1072
2. KuoCT
MorriseyEE
AnandappaR
SigristK
LuMM
1997 GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11 1048 1060
3. LyonsI
ParsonsLM
HartleyL
LiR
AndrewsJE
1995 Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9 1654 1666
4. NayaF
BlackB
WuH
Bassel-DubyR
RichardsonJ
2002 Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8 1303 1309
5. NiuZ
YuW
ZhangSX
BarronM
BelaguliNS
2005 Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J Biol Chem 280 32531 32538
6. MianoJM
RamananN
GeorgerMA
de Mesy BentleyKL
EmersonRL
2004 Restricted inactivation of serum response factor to the cardiovascular system. Proc Natl Acad Sci USA 101 17132 17137
7. BalzaROJr
MisraRP
2006 Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 281 6498 6510
8. KaramboulasC
DakuboGD
LiuJ
De RepentignyY
YutzeyK
2006 Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. J Cell Sci 119 4315 4321
9. SearcyRD
VincentEB
LiberatoreCM
YutzeyKE
1998 A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125 4461 4470
10. SpencerJA
MisraRP
1996 Expression of the serum response factor gene is regulated by serum response factor binding sites. J Biol Chem 271 16535 16543
11. KouzaridesT
2007 Chromatin modifications and their function. Cell 128 693 705
12. RuthenburgAJ
LiH
PatelDJ
AllisCD
2007 Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8 983 994
13. LangeM
KaynakB
ForsterUB
TonjesM
FischerJJ
2008 Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22 2370 2384
14. ThorneJL
CampbellMJ
TurnerBM
2009 Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 41 164 175
15. WangZ
ZangC
CuiK
SchonesDE
BarskiA
2009 Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138 1019 1031
16. ChangS
McKinseyTA
ZhangCL
RichardsonJA
HillJA
2004 Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24 8467 8476
17. HaberlandM
MontgomeryRL
OlsonEN
2009 The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10 32 42
18. GitterA
SiegfriedZ
KlutsteinM
FornesO
OlivaB
2009 Backup in gene regulatory networks explains differences between binding and knockout results. Mol Syst Biol 5 276
19. YuM
RivaL
XieH
SchindlerY
MoranT
2009 Insights into GATA-1-Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis. Molecular Cell 36 682 695
20. Phuc LeP
FriedmanJR
SchugJ
BrestelliJE
ParkerJB
2005 Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet 1 e16 doi:10.1371/journal.pgen.0010016
21. KwonY-S
Garcia-BassetsI
HuttKR
ChengCS
JinM
2007 Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc Natl Acad Sci USA 104 4852 4857
22. HuZ
KillionPJ
IyerVR
2007 Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39 683 687
23. HarbisonC
GordonD
LeeT
RinaldiN
MacisaacK
2004 Transcriptional regulatory code of a eukaryotic genome. Nature 431 99 104
24. CordesKR
SheehyNT
WhiteMP
BerryEC
MortonSU
2009 miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460 705 710
25. KwonC
HanZ
OlsonEN
SrivastavaD
2005 MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 102 18986 18991
26. ChenJF
MandelEM
ThomsonJM
WuQ
CallisTE
2006 The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38 228 233
27. NiuZ
LiA
ZhangSX
SchwartzRJ
2007 Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 19 618 627
28. ZhaoY
RansomJF
LiA
VedanthamV
von DrehleM
2007 Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129 303 317
29. KnuppelR
DietzeP
LehnbergW
FrechK
WingenderE
1994 TRANSFAC retrieval program: a network model database of eukaryotic transcription regulating sequences and proteins. J Comput Biol 1 191 198
30. MianoJM
LongX
FujiwaraK
2007 Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292 C70 81
31. SiepelA
BejeranoG
PedersenJ
HinrichsA
HouM
2005 Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15 1034 1050
32. AkazawaH
KomuroI
2005 Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol Ther 107 252 268
33. ClarkKL
YutzeyKE
BensonDW
2006 Transcription factors and congenital heart defects. Annual Review of Physiology 68 97 121
34. KobayashiS
LackeyT
HuangY
BispingE
PuWT
2006 Transcription factor gata4 regulates cardiac BCL2 gene expression in vitro and in vivo. Faseb J 20 800 802
35. VickersER
KaszaA
KurnazIA
SeifertA
ZeefLAH
2004 Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol Cell Biol 24 10340 10351
36. SuzukiYJ
EvansT
2004 Regulation of cardiac myocyte apoptosis by the GATA-4 transcription factor. Life Sci 74 1829 1838
37. BruneauBG
NemerG
SchmittJP
CharronF
RobitailleL
2001 A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106 709 721
38. PuWT
IshiwataT
JuraszekAL
MaQ
IzumoS
2004 GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Developmental Biology 275 235 244
39. FischerJJ
ToedlingJ
KruegerT
SchuelerM
HuberW
2008 Combinatorial effects of four histone modifications in transcription and differentiation. Genomics 91 41 51
40. TakayaT
KawamuraT
MorimotoT
OnoK
KitaT
2008 Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes. J Biol Chem 283 9828 9835
41. CaoD
WangZ
ZhangCL
OhJ
XingW
2005 Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Mol Cell Biol 25 364 376
42. HirschyA
SchatzmannF
EhlerE
PerriardJC
2006 Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289 430 441
43. van RooijE
LiuN
OlsonEN
2008 MicroRNAs flex their muscles. Trends Genet 24 159 166
44. LatronicoMV
CatalucciD
CondorelliG
2008 MicroRNA and cardiac pathologies. Physiol Genomics 34 239 242
45. KelAE
GosslingE
ReuterI
CheremushkinE
Kel-MargoulisOV
2003 MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31 3576 3579
46. ENCODE 2007 Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 799 816
47. FarnhamPJ
2009 Insights from genomic profiling of transcription factors. Nat Rev Genet 10 605 616
48. VaquerizasJM
KummerfeldSK
TeichmannSA
LuscombeNM
2009 A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10 252 263
49. KochCM
AndrewsRM
FlicekP
DillonSC
KaraözU
2007 The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17 691 707
50. WangY
LiangY
LuQ
2008 MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet 74 307 315
51. CordesKR
SrivastavaD
2009 MicroRNA regulation of cardiovascular development. Circ Res 104 724 732
52. BonauerA
CarmonaG
IwasakiM
MioneM
KoyanagiM
2009 MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324 1710 1713
53. KimVN
HanJ
SiomiMC
2009 Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10 126 139
54. LinQ
SchwarzJ
BucanaC
OlsonEN
1997 Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276 1404 1407
55. VongLH
RagusaMJ
SchwarzJJ
2005 Generation of conditional Mef2cloxP/loxP mice for temporal- and tissue-specific analyses. Genesis 43 43 48
56. SperlingS
GrimmCH
DunkelI
MebusS
SperlingHP
2005 Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat 26 575 582
57. MacDonaldST
BamforthSD
ChenC-M
FarthingCR
FranklynA
2008 Epiblastic Cited2 deficiency results in cardiac phenotypic heterogeneity and provides a mechanism for haploinsufficiency. Cardiovasc Res 79 448 457
58. McGeeS
FairlieE
GarnhamA
HargreavesM
2009 Exercise-induced histone modifications in human skeletal muscle. J Physiol (Lond)
59. SaccaniS
PantanoS
NatoliG
2002 p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 3 69 75
60. SripichaiO
KieferCM
BhanuNV
TannoT
NohS-J
2009 Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming. Blood 114 2299 2306
61. ShalgiR
LieberD
OrenM
PilpelY
2007 Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3 e131 doi:10.1371/journal.pcbi.0030131
62. SiomiH
SiomiMC
2009 On the road to reading the RNA-interference code. Nature 457 396 404
63. ToenjesM
SchuelerM
HammerS
PapeUJ
FischerJJ
2008 Prediction of cardiac transcription networks based on molecular data and complex clinical phenotypes. Mol Biosyst 4 589 598
64. ClaycombWC
LansonNAJr
StallworthBS
EgelandDB
DelcarpioJB
1998 HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95 2979 2984
65. SmythGK
2004 Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 Article3
66. GentlemanRC
CareyVJ
BatesDM
BolstadB
DettlingM
2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80
67. BenjaminiY
YekutieliD
2001 The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29 1165 1188
68. ChenC
RidzonDA
BroomerAJ
ZhouZ
LeeDH
2005 Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33 e179
69. WuRM
WoodM
ThrushA
WaltonEF
Varkonyi-GasicE
2007 Real-Time PCR Quantification of Plant miRNAs Using Universal ProbeLibrary Technology. Biochemica 2
70. EmdeAK
GrunertM
WeeseD
ReinertK
SperlingSR
2009 MicroRazerS: rapid alignment of small RNA reads. Bioinformatics 26 123 124
71. JohnB
EnrightAJ
AravinA
TuschlT
SanderC
2004 Human MicroRNA targets. PLoS Biol 2 e363 doi:10.1371/journal.pbio.0020363
72. HorakCE
MahajanMC
LuscombeNM
GersteinM
WeissmanSM
2002 GATA-1 binding sites mapped in the beta-globin locus by using mammalian chIp-chip analysis. Proc Natl Acad Sci U S A 99 2924 2929
73. HuberW
von HeydebreckA
SultmannH
PoustkaA
VingronM
2002 Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 Suppl 1 S96 104
74. StoreyJD
TibshiraniR
2003 Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100 9440 9445
75. WeeseD
EmdeAK
RauschT
DoringA
ReinertK
2009 RazerS–fast read mapping with sensitivity control. Genome Res 19 1646 1654
76. JiH
JiangH
MaW
JohnsonDS
MyersRM
2008 An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26 1293 1300
77. AshburnerM
BallCA
BlakeJA
BotsteinD
ButlerH
2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25 29
78. AlexaA
RahnenfuhrerJ
LengauerT
2006 Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22 1600 1607
79. AndersonC
CatoeH
WernerR
2006 MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 34 5863 5871
80. BoutzPL
ChawlaG
StoilovP
BlackDL
2007 MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 21 71 84
81. CallisTE
DengZ
ChenJF
WangDZ
2008 Muscling through the microRNA world. Exp Biol Med (Maywood) 233 131 138
82. CareA
CatalucciD
FelicettiF
BonciD
AddarioA
2007 MicroRNA-133 controls cardiac hypertrophy. Nat Med 13 613 618
83. ChenCZ
LiL
LodishHF
BartelDP
2004 MicroRNAs modulate hematopoietic lineage differentiation. Science 303 83 86
84. ChengAM
ByromMW
SheltonJ
FordLP
2005 Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33 1290 1297
85. CimminoA
CalinGA
FabbriM
IorioMV
FerracinM
2005 miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102 13944 13949
86. ClopA
MarcqF
TakedaH
PirottinD
TordoirX
2006 A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38 813 818
87. FanGC
ChuG
KraniasEG
2005 Hsp20 and its cardioprotection. Trends Cardiovasc Med 15 138 141
88. FelliN
FontanaL
PelosiE
BottaR
BonciD
2005 MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102 18081 18086
89. KimHK
LeeYS
SivaprasadU
MalhotraA
DuttaA
2006 Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174 677 687
90. KutayH
BaiS
DattaJ
MotiwalaT
PogribnyI
2006 Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99 671 678
91. Lagos-QuintanaM
RauhutR
MeyerJ
BorkhardtA
TuschlT
2003 New microRNAs from mouse and human. Rna 9 175 179
92. LalA
NavarroF
MaherCA
MaliszewskiLE
YanN
2009 miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35 610 625
93. LatronicoMV
CatalucciD
CondorelliG
2007 Emerging role of microRNAs in cardiovascular biology. Circ Res 101 1225 1236
94. LuoX
LinH
PanZ
XiaoJ
ZhangY
2008 Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem 283 20045 20052
95. MarsonA
LevineSS
ColeMF
FramptonGM
BrambrinkT
2008 Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134 521 533
96. McCarthyJJ
EsserKA
2007 MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102 306 313
97. MengF
HensonR
Wehbe-JanekH
GhoshalK
JacobST
2007 MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer Gastroenterology 647 658
98. MottJL
KobayashiS
BronkSF
GoresGJ
2007 mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26 6133 6140
99. NaguibnevaI
Ameyar-ZazouaM
PolesskayaA
Ait-Si-AliS
GroismanR
2006 The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8 278 284
100. ParkSY
LeeJH
HaM
NamJW
KimVN
2009 miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16 23 29
101. PetroccaF
VisoneR
OnelliMR
ShahMH
NicolosoMS
2008 E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13 272 286
102. RaoPK
KumarRM
FarkhondehM
BaskervilleS
LodishHF
2006 Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103 8721 8726
103. RenXP
WuJ
WangX
SartorMA
QianJ
2009 MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119 2357 2366
104. RosenbergMI
GeorgesSA
AsawachaicharnA
AnalauE
TapscottSJ
2006 MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175 77 85
105. SmirnovaL
GrafeA
SeilerA
SchumacherS
NitschR
2005 Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21 1469 1477
106. TangY
ZhengJ
SunY
WuZ
LiuZ
2009 MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 50 377 387
107. ThumT
CatalucciD
BauersachsJ
2008 MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 79 562 570
108. ThumT
GaluppoP
WolfC
FiedlerJ
KneitzS
2007 MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116 258 267
109. ThumT
GrossC
FiedlerJ
FischerT
KisslerS
2008 MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456 980 984
110. TiliE
MichailleJJ
CiminoA
CostineanS
DumitruCD
2007 Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179 5082 5089
111. TuddenhamL
WheelerG
Ntounia-FousaraS
WatersJ
HajihosseiniMK
2006 The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580 4214 4217
112. UrbichC
KuehbacherA
DimmelerS
2008 Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79 581 588
113. van RooijE
SutherlandLB
QiX
RichardsonJA
HillJ
2007 Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316 575 579
114. XiaoJ
LuoX
LinH
ZhangY
LuY
2007 MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282 12363 12367
115. XuC
LuY
PanZ
ChuW
LuoX
2007 The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120 3045 3052
116. YangB
LinH
XiaoJ
LuY
LuoX
2007 The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13 486 491
117. YuasaK
HagiwaraY
AndoM
NakamuraA
TakedaS
2008 MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct 33 163 169
118. ZhaoY
SamalE
SrivastavaD
2005 Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436 214 220
119. ZhuS
SiML
WuH
MoYY
2007 MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282 14328 14336
120. ZhuS
WuH
WuF
NieD
ShengS
2008 MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18 350 359
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 2
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci
- MiRNA Control of Vegetative Phase Change in Trees
- The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs
- Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of