#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins


The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs.


Vyšlo v časopise: Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1001301
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001301

Souhrn

The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs.


Zdroje

1. EarnDJD

DushoffJ

LevinSA

2002 Ecology and evolution of the flu. Trends Ecol Evol 17 334 340

2. BaigentSJ

McCauleyJW

2003 Influenza type A in humans, mammals and birds: Determinants of virus virulence, host-range and interspecies transmission. BioEssays 25 657 671

3. NelsonMI

HolmesEC

2007 The evolution of epidemic influenza. Nat Rev Genet 8 196 205

4. TaubenbergerJK

MorensDM

2008 The pathology of influenza virus infections. Annu Rev Pathol: Mech Dis 3 499 522

5. AriasCF

Escalera-ZamudioM

Soto-Del RíoMD

Cobián-GüemesAG

IsaP

2009 Molecular anatomy of 2009 influenza virus A (H1N1). Arch Med Res 40 643 654

6. DasK

AraminiJM

MaLC

KrugRM

ArnoldE

2010 Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17 530 538

7. HolmesEC

GhedinE

MillerN

TaylorJ

BaoY

2005 Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3 e300 doi:10.1371/journal.pbio.0030300

8. SuzukiY

2006 Natural selection on the influenza virus genome. Mol Biol Evol 23 1902 1911

9. CarratF

FlahaultA

2007 Influenza vaccine: the challenge of antigenic drift. Vaccine 25 6852 6862

10. DuffyS

ShackeltonLA

HolmesEC

2008 Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9 267 276

11. YangZ

2000 Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol 51 423 432

12. BushRM

FitchWM

BenderCA

CoxNJ

1999 Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16 1457 1465

13. SmithDJ

LapedesAS

de JongJC

BestebroerTM

RimmelzwaanGF

2004 Mapping the antigenic and genetic evolution of influenza virus. Science 305 371 376

14. SimonsenL

ViboudC

GrenfellBT

DushoffJ

JenningsL

2007 The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol 24 1811 1820

15. MosconaA

2009 Global transmission of oseltamivir-resistant influenza. New Engl J Med 360 953 956

16. BloomJD

GongLI

BaltimoreD

2010 Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328 1272 1275

17. WileyDC

WilsonIA

SkehelJJ

1981 Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289 373 378

18. LaverWG

AirGM

WebsterRG

MarkoffLJ

1982 Amino acid sequence changes in antigenic variants of type A influenza virus N2 neuraminidase. Virology 122 450 460

19. AirGM

ElsMC

BrownLE

LaverWG

WebsterRG

1985 Location of antigenic sites on the three-dimensional structure of the influenza N2 virus neuraminidase. Virology 145 237 248

20. GulatiU

HwangCC

VenkatramaniL

GulatiS

StraySJ

2002 Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/Memphis/31/98). J Virol 76 12274 12280

21. BushRM

BenderCA

SubbaraoK

CoxNJ

FitchWM

1999 Predicting the evolution of human influenza A. Science 286 1921 1925

22. WolfYI

ViboudC

HolmesEC

KooninEV

LipmanDJ

2006 Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1 34

23. BlackburneBP

HayAJ

GoldsteinRA

2008 Changing selective pressure during antigenic changes in human influenza H3. PLoS Pathog 4 e1000058 doi:10.1371/journal.ppat.1000058

24. Kosakovsky PondSL

PoonAF

BrownAJL

FrostSDW

2008 A maximum likelihood method for detecting directional evolution in protein sequences and its application to influenza A virus. Mol Biol Evol 25 1809 1824

25. KryazhimskiyS

BazykinGA

PlotkinJB

DushoffJ

2008 Directionality in the evolution of influenza A haemagglutinin. Proc R Soc B 275 2455 2464

26. WilsonIA

CoxNJ

1990 Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 8 737 771

27. GuoHH

ChoeJ

LoebLA

2004 Protein tolerance to random amino acid change. Proc Natl Acad Sci USA 101 9205 9210

28. BloomJD

ArnoldFH

2009 In the light of directed evolution: Pathways of adaptive protein evolution. Proc Natl Acad Sci USA 106 9995 10000

29. RomeroPA

ArnoldFH

2009 Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10 866 876

30. RemoldSK

LenskiRE

2004 Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet 36 423 426

31. SanjuánR

MoyaA

ElenaSF

2004 The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci USA 101 15376 15379

32. RimmelzwaanGF

BerkhoffEGM

NieuwkoopNJ

SmithDJ

FouchierRAM

2005 Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. J Gen Virol 86 1801 1805

33. DePristoMA

WeinreichDM

HartlDL

2005 Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6 678 687

34. SanjuánR

CuevasJM

MoyaA

ElenaSF

2005 Epistasis and the adaptability of an RNA virus. Genetics 170 1001 1008

35. MateoR

MateuMG

2007 Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 81 1879 1887

36. de VisserJAGM

ElenaSF

2007 The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8 139 149

37. TongAHY

LesageG

BaderGD

DingH

XuH

2004 Global mapping of the yeast genetic interaction network. Science 303 808 813

38. de VisserJAGM

ParkSC

KrugJ

2009 Exploring the effect of sex on empirical fitness landscapes. Am Nat 174 S15 S30

39. MeerMV

KondrashovAS

Artzy-RandrupY

KondrashovFA

2010 Compensatory evolution in mitochondrial tRNAs navigates valleys of low fitness. Nature 464 279 282

40. BlountZD

BorlandCZ

LenskiRE

2008 Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105 7899 7906

41. KryazhimskiyS

TkačikG

PlotkinJB

2009 The dynamics of adaptation on correlated fitness landscapes. Proc Natl Acad Sci 106 18638 18643

42. ShapiroB

RambautA

PybusOG

HolmesEC

2006 A phylogenetic method for detecting positive epistasis in gene sequences and its application to RNA virus evolution. Mol Biol Evol 23 1724 1730

43. WeinreichDM

DelaneyNF

DePristoMA

HartlDL

2006 Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312 111 114

44. LozovskyER

ChookajornT

BrownKM

ImwongM

ShawPJ

2009 Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci USA 106 12025 12030

45. HaqO

LevyRM

MorozovAV

AndrecM

2009 Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease. BMC Bioinform 10 S10

46. TrindadeS

SousaA

XavierKB

DionisioF

FerreiraMG

2009 Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet 5 e1000578 doi:10.1371/journal.pgen.1000578

47. CodoñerFM

FaresMA

2008 Why should we care about molecular coevolution? Evol Bioinform 4 29 38

48. KorberBTM

FarberRM

WolpertDH

LapedesAS

1993 Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: An information theoretic analysis. Proc Natl Acad Sci USA 90 7176 7180

49. AtchleyWR

WollenbergKR

FitchWM

TerhalleW

DressAW

2000 Correlations among amino acid sites in bHLH protein domains: An information theoretic analysis. Mol Biol Evol 17 164 178

50. GloorGB

MartinLC

WahlLM

DunnSD

2005 Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 44 7156 7165

51. LocklessSW

RanganathanR

1999 Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286 295 299

52. WollenbergKR

AtchleyWR

2000 Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci USA 97 3288 3291

53. FaresMA

TraversSAA

2006 A novel method for detecting intramolecular coevolution: Adding a further dimension to selective constraints analyses. Genetics 173 9 23

54. WangQ

LeeC

2007 Distinguishing functional amino acid covariation from background linkage disequilibrium in HIV protease and reverse transcriptase. PLoS ONE 2 e814 doi:10.1371/journal.pone.0000814

55. CaporasoJG

SmitS

EastonBC

HunterL

HuttleyGA

2008 Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics. BMC Evol Biol 8 327

56. DunnSD

WahlLM

GloorGB

2008 Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 24 333 340

57. BusljeCM

SantosJ

DelfinoJM

NielsenM

2009 Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Bioinformatics 25 1125 1131

58. GovindarajanS

NessJE

KimS

MundorffEC

MinshullJ

2003 Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. J Mol Biol 328 1061 1069

59. PollockDD

TaylorWR

GoldmanN

1999 Coevolving protein residues: Maximum likelihood identification and relationship to structure. J Mol Biol 287 187 198

60. DutheilJ

PupkoT

Jean-MarieA

GaltierN

2005 A model-based approach for detecting coevolving positions in a molecule. Mol Biol Evol 22 1919 1928

61. Fukami-KobayashiK

SchreiberDR

BennerSA

2002 Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences. J Mol Biol 319 729 743

62. DimmicMW

HubiszMJ

BustamanteCD

NielsenR

2005 Detecting coevolving amino acid sites using Bayesian mutational mapping. Bioinformatics 21 i126 i135

63. DutheilJ

GaltierN

2007 Detecting groups of coevolving positions in a molecule: a clustering approach. BMC Evol Biol 7 242

64. PoonAFY

LewisFI

Kosakovsky PondSL

FrostSDW

2007 An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. PLoS Comput Biol 3 e231 doi:10.1371/journal.pcbi.0030231

65. BaussandJ

CarboneA

2009 A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence. PLoS Comput Bio 5 e1000488 doi:10.1371/journal.pcbi.1000488

66. PoonAFY

SwensonLC

DongWWY

DengW

Kosakovsky PondSL

2010 Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Mol Biol Evol 27 819 832

67. BazykinGA

DushoffJ

LevinSA

KondrashovAS

2006 Bursts of nonsynonymous substitutions in HIV-1 evolution reveal instances of positive selection at conservative protein sites. Proc Natl Acad Sci USA 103 19396 19401

68. YangZ

BielawskiJP

2000 Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15 496 503

69. RussellCA

JonesTC

BarrIG

CoxNJ

GartenRJ

2008 Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine 26S D31 34

70. AokiFY

BoivinG

RobertsN

2007 Influenza virus susceptibility and resistance to oseltamivir. Antiviral Therapy 12 603 616

71. CollinsP

HaireL

LinY

LiuJ

RussellR

2009 Structural basis for oseltamivir resistance of influenza viruses. Vaccine 27 6317 6323

72. Kosakovsky PondSL

FrostSDW

MuseSV

2005 HyPhy: hypothesis testing using phylogenies. Bioinformatics 21 676 679

73. FornasariMS

ParisiG

EchaveJ

2002 Site-specic amino acid replacement matrices from structurally constrained protein evolution simulations. Mol Biol Evol 19 352 356

74. RobinsonDM

JonesDT

KishinoH

GoldmanN

ThorneJL

2003 Protein evolution with dependence among codons due to tertiary structure. Mol Biol Evol 10 1692 1704

75. RodrigueN

LartillotN

BryantD

PhilippeH

2005 Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene 347 207 217

76. PlotkinJB

DushoffJ

LevinSA

2002 Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci USA 99 6263 6268

77. LevinSA

DushoffJ

PlotkinJB

2004 Evolution and persistance of influenza A and other viruses. Math Biosci 188 17 28

78. KryazhimskiyS

PlotkinJB

2008 The population genetics of dN/dS. PLoS Genet 4 e1000304 doi:10.1371/journal.pgen.1000304

79. ShortleD

LinB

1985 Genetic analysis of staphylococcal nuclease: identification of three intragenic “global” suppressors of nuclease-minus mutations. Genetics 110 539 555

80. PoteeteAR

RennellD

BouvierSE

HardyLW

1997 Alteration of T4 lysozyme structure by secondsite reversion of deleterious mutations. Prot Sci 6 2418 2425

81. HensleySE

DasSR

BaileyAL

SchmidtLM

HickmanHD

2009 Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326 734 736

82. WagnerA

2008 Neutralism and selectionism: a network-based reconciliation. Nat Rev Genet 9 965 974

83. DraghiJA

ParsonsTL

WagnerGP

PlotkinJB

2010 Mutational robustness can facilitate adaptation. Nature 463 353 355

84. KoelleK

CobeyS

GrenfellB

PascualM

2006 Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314 1898 1903

85. BaoY

BolotovP

DernovoyD

KiryutinB

ZaslavskyL

2008 The influenza virus resource at the National Center for Biotechnology Information. J Virol 82 596 601

86. ChennaR

SugawaraH

KoikeT

LopezR

GibsonTJ

2003 Multiple sequence alignment with the Clustal series of programs. Nucl Acids Res 31 3497 3500

87. SuyamaM

TorrentsD

BorkP

2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl Acids Res 34 W609 W612

88. GuindonS

GascuelO

2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704

89. SwoffordDL

2003 Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts Sinauer Associates

90. ConnorEF

SimberloffD

1979 The assembly of species communities: chance or competition? Ecology 60 1132 1140

91. ManleyBFJ

1995 A note on the analysis of species co-occurrences. Ecology 76 1109 1115

92. SundaresanSR

FischhoffIR

DushoffJ

2009 Avoiding spurious findings of nonrandom social structure in association data. Anim Behav 77 1381 1385

93. SorićB

1989 “Discoveries” and effect-size estimation. J Am Stat Assoc 84 608 610

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#