Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins
The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs.
Vyšlo v časopise:
Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins. PLoS Genet 7(2): e32767. doi:10.1371/journal.pgen.1001301
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001301
Souhrn
The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs.
Zdroje
1. EarnDJD
DushoffJ
LevinSA
2002 Ecology and evolution of the flu. Trends Ecol Evol 17 334 340
2. BaigentSJ
McCauleyJW
2003 Influenza type A in humans, mammals and birds: Determinants of virus virulence, host-range and interspecies transmission. BioEssays 25 657 671
3. NelsonMI
HolmesEC
2007 The evolution of epidemic influenza. Nat Rev Genet 8 196 205
4. TaubenbergerJK
MorensDM
2008 The pathology of influenza virus infections. Annu Rev Pathol: Mech Dis 3 499 522
5. AriasCF
Escalera-ZamudioM
Soto-Del RíoMD
Cobián-GüemesAG
IsaP
2009 Molecular anatomy of 2009 influenza virus A (H1N1). Arch Med Res 40 643 654
6. DasK
AraminiJM
MaLC
KrugRM
ArnoldE
2010 Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17 530 538
7. HolmesEC
GhedinE
MillerN
TaylorJ
BaoY
2005 Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3 e300 doi:10.1371/journal.pbio.0030300
8. SuzukiY
2006 Natural selection on the influenza virus genome. Mol Biol Evol 23 1902 1911
9. CarratF
FlahaultA
2007 Influenza vaccine: the challenge of antigenic drift. Vaccine 25 6852 6862
10. DuffyS
ShackeltonLA
HolmesEC
2008 Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9 267 276
11. YangZ
2000 Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol 51 423 432
12. BushRM
FitchWM
BenderCA
CoxNJ
1999 Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16 1457 1465
13. SmithDJ
LapedesAS
de JongJC
BestebroerTM
RimmelzwaanGF
2004 Mapping the antigenic and genetic evolution of influenza virus. Science 305 371 376
14. SimonsenL
ViboudC
GrenfellBT
DushoffJ
JenningsL
2007 The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol 24 1811 1820
15. MosconaA
2009 Global transmission of oseltamivir-resistant influenza. New Engl J Med 360 953 956
16. BloomJD
GongLI
BaltimoreD
2010 Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328 1272 1275
17. WileyDC
WilsonIA
SkehelJJ
1981 Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289 373 378
18. LaverWG
AirGM
WebsterRG
MarkoffLJ
1982 Amino acid sequence changes in antigenic variants of type A influenza virus N2 neuraminidase. Virology 122 450 460
19. AirGM
ElsMC
BrownLE
LaverWG
WebsterRG
1985 Location of antigenic sites on the three-dimensional structure of the influenza N2 virus neuraminidase. Virology 145 237 248
20. GulatiU
HwangCC
VenkatramaniL
GulatiS
StraySJ
2002 Antibody epitopes on the neuraminidase of a recent H3N2 influenza virus (A/Memphis/31/98). J Virol 76 12274 12280
21. BushRM
BenderCA
SubbaraoK
CoxNJ
FitchWM
1999 Predicting the evolution of human influenza A. Science 286 1921 1925
22. WolfYI
ViboudC
HolmesEC
KooninEV
LipmanDJ
2006 Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1 34
23. BlackburneBP
HayAJ
GoldsteinRA
2008 Changing selective pressure during antigenic changes in human influenza H3. PLoS Pathog 4 e1000058 doi:10.1371/journal.ppat.1000058
24. Kosakovsky PondSL
PoonAF
BrownAJL
FrostSDW
2008 A maximum likelihood method for detecting directional evolution in protein sequences and its application to influenza A virus. Mol Biol Evol 25 1809 1824
25. KryazhimskiyS
BazykinGA
PlotkinJB
DushoffJ
2008 Directionality in the evolution of influenza A haemagglutinin. Proc R Soc B 275 2455 2464
26. WilsonIA
CoxNJ
1990 Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol 8 737 771
27. GuoHH
ChoeJ
LoebLA
2004 Protein tolerance to random amino acid change. Proc Natl Acad Sci USA 101 9205 9210
28. BloomJD
ArnoldFH
2009 In the light of directed evolution: Pathways of adaptive protein evolution. Proc Natl Acad Sci USA 106 9995 10000
29. RomeroPA
ArnoldFH
2009 Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10 866 876
30. RemoldSK
LenskiRE
2004 Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet 36 423 426
31. SanjuánR
MoyaA
ElenaSF
2004 The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci USA 101 15376 15379
32. RimmelzwaanGF
BerkhoffEGM
NieuwkoopNJ
SmithDJ
FouchierRAM
2005 Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. J Gen Virol 86 1801 1805
33. DePristoMA
WeinreichDM
HartlDL
2005 Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6 678 687
34. SanjuánR
CuevasJM
MoyaA
ElenaSF
2005 Epistasis and the adaptability of an RNA virus. Genetics 170 1001 1008
35. MateoR
MateuMG
2007 Deterministic, compensatory mutational events in the capsid of foot-and-mouth disease virus in response to the introduction of mutations found in viruses from persistent infections. J Virol 81 1879 1887
36. de VisserJAGM
ElenaSF
2007 The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8 139 149
37. TongAHY
LesageG
BaderGD
DingH
XuH
2004 Global mapping of the yeast genetic interaction network. Science 303 808 813
38. de VisserJAGM
ParkSC
KrugJ
2009 Exploring the effect of sex on empirical fitness landscapes. Am Nat 174 S15 S30
39. MeerMV
KondrashovAS
Artzy-RandrupY
KondrashovFA
2010 Compensatory evolution in mitochondrial tRNAs navigates valleys of low fitness. Nature 464 279 282
40. BlountZD
BorlandCZ
LenskiRE
2008 Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105 7899 7906
41. KryazhimskiyS
TkačikG
PlotkinJB
2009 The dynamics of adaptation on correlated fitness landscapes. Proc Natl Acad Sci 106 18638 18643
42. ShapiroB
RambautA
PybusOG
HolmesEC
2006 A phylogenetic method for detecting positive epistasis in gene sequences and its application to RNA virus evolution. Mol Biol Evol 23 1724 1730
43. WeinreichDM
DelaneyNF
DePristoMA
HartlDL
2006 Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312 111 114
44. LozovskyER
ChookajornT
BrownKM
ImwongM
ShawPJ
2009 Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci USA 106 12025 12030
45. HaqO
LevyRM
MorozovAV
AndrecM
2009 Pairwise and higher-order correlations among drug-resistance mutations in HIV-1 subtype B protease. BMC Bioinform 10 S10
46. TrindadeS
SousaA
XavierKB
DionisioF
FerreiraMG
2009 Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet 5 e1000578 doi:10.1371/journal.pgen.1000578
47. CodoñerFM
FaresMA
2008 Why should we care about molecular coevolution? Evol Bioinform 4 29 38
48. KorberBTM
FarberRM
WolpertDH
LapedesAS
1993 Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: An information theoretic analysis. Proc Natl Acad Sci USA 90 7176 7180
49. AtchleyWR
WollenbergKR
FitchWM
TerhalleW
DressAW
2000 Correlations among amino acid sites in bHLH protein domains: An information theoretic analysis. Mol Biol Evol 17 164 178
50. GloorGB
MartinLC
WahlLM
DunnSD
2005 Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 44 7156 7165
51. LocklessSW
RanganathanR
1999 Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286 295 299
52. WollenbergKR
AtchleyWR
2000 Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci USA 97 3288 3291
53. FaresMA
TraversSAA
2006 A novel method for detecting intramolecular coevolution: Adding a further dimension to selective constraints analyses. Genetics 173 9 23
54. WangQ
LeeC
2007 Distinguishing functional amino acid covariation from background linkage disequilibrium in HIV protease and reverse transcriptase. PLoS ONE 2 e814 doi:10.1371/journal.pone.0000814
55. CaporasoJG
SmitS
EastonBC
HunterL
HuttleyGA
2008 Detecting coevolution without phylogenetic trees? Tree-ignorant metrics of coevolution perform as well as tree-aware metrics. BMC Evol Biol 8 327
56. DunnSD
WahlLM
GloorGB
2008 Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 24 333 340
57. BusljeCM
SantosJ
DelfinoJM
NielsenM
2009 Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Bioinformatics 25 1125 1131
58. GovindarajanS
NessJE
KimS
MundorffEC
MinshullJ
2003 Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. J Mol Biol 328 1061 1069
59. PollockDD
TaylorWR
GoldmanN
1999 Coevolving protein residues: Maximum likelihood identification and relationship to structure. J Mol Biol 287 187 198
60. DutheilJ
PupkoT
Jean-MarieA
GaltierN
2005 A model-based approach for detecting coevolving positions in a molecule. Mol Biol Evol 22 1919 1928
61. Fukami-KobayashiK
SchreiberDR
BennerSA
2002 Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences. J Mol Biol 319 729 743
62. DimmicMW
HubiszMJ
BustamanteCD
NielsenR
2005 Detecting coevolving amino acid sites using Bayesian mutational mapping. Bioinformatics 21 i126 i135
63. DutheilJ
GaltierN
2007 Detecting groups of coevolving positions in a molecule: a clustering approach. BMC Evol Biol 7 242
64. PoonAFY
LewisFI
Kosakovsky PondSL
FrostSDW
2007 An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. PLoS Comput Biol 3 e231 doi:10.1371/journal.pcbi.0030231
65. BaussandJ
CarboneA
2009 A combinatorial approach to detect coevolved amino acid networks in protein families of variable divergence. PLoS Comput Bio 5 e1000488 doi:10.1371/journal.pcbi.1000488
66. PoonAFY
SwensonLC
DongWWY
DengW
Kosakovsky PondSL
2010 Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Mol Biol Evol 27 819 832
67. BazykinGA
DushoffJ
LevinSA
KondrashovAS
2006 Bursts of nonsynonymous substitutions in HIV-1 evolution reveal instances of positive selection at conservative protein sites. Proc Natl Acad Sci USA 103 19396 19401
68. YangZ
BielawskiJP
2000 Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15 496 503
69. RussellCA
JonesTC
BarrIG
CoxNJ
GartenRJ
2008 Influenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine 26S D31 34
70. AokiFY
BoivinG
RobertsN
2007 Influenza virus susceptibility and resistance to oseltamivir. Antiviral Therapy 12 603 616
71. CollinsP
HaireL
LinY
LiuJ
RussellR
2009 Structural basis for oseltamivir resistance of influenza viruses. Vaccine 27 6317 6323
72. Kosakovsky PondSL
FrostSDW
MuseSV
2005 HyPhy: hypothesis testing using phylogenies. Bioinformatics 21 676 679
73. FornasariMS
ParisiG
EchaveJ
2002 Site-specic amino acid replacement matrices from structurally constrained protein evolution simulations. Mol Biol Evol 19 352 356
74. RobinsonDM
JonesDT
KishinoH
GoldmanN
ThorneJL
2003 Protein evolution with dependence among codons due to tertiary structure. Mol Biol Evol 10 1692 1704
75. RodrigueN
LartillotN
BryantD
PhilippeH
2005 Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene 347 207 217
76. PlotkinJB
DushoffJ
LevinSA
2002 Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci USA 99 6263 6268
77. LevinSA
DushoffJ
PlotkinJB
2004 Evolution and persistance of influenza A and other viruses. Math Biosci 188 17 28
78. KryazhimskiyS
PlotkinJB
2008 The population genetics of dN/dS. PLoS Genet 4 e1000304 doi:10.1371/journal.pgen.1000304
79. ShortleD
LinB
1985 Genetic analysis of staphylococcal nuclease: identification of three intragenic “global” suppressors of nuclease-minus mutations. Genetics 110 539 555
80. PoteeteAR
RennellD
BouvierSE
HardyLW
1997 Alteration of T4 lysozyme structure by secondsite reversion of deleterious mutations. Prot Sci 6 2418 2425
81. HensleySE
DasSR
BaileyAL
SchmidtLM
HickmanHD
2009 Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326 734 736
82. WagnerA
2008 Neutralism and selectionism: a network-based reconciliation. Nat Rev Genet 9 965 974
83. DraghiJA
ParsonsTL
WagnerGP
PlotkinJB
2010 Mutational robustness can facilitate adaptation. Nature 463 353 355
84. KoelleK
CobeyS
GrenfellB
PascualM
2006 Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314 1898 1903
85. BaoY
BolotovP
DernovoyD
KiryutinB
ZaslavskyL
2008 The influenza virus resource at the National Center for Biotechnology Information. J Virol 82 596 601
86. ChennaR
SugawaraH
KoikeT
LopezR
GibsonTJ
2003 Multiple sequence alignment with the Clustal series of programs. Nucl Acids Res 31 3497 3500
87. SuyamaM
TorrentsD
BorkP
2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl Acids Res 34 W609 W612
88. GuindonS
GascuelO
2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704
89. SwoffordDL
2003 Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts Sinauer Associates
90. ConnorEF
SimberloffD
1979 The assembly of species communities: chance or competition? Ecology 60 1132 1140
91. ManleyBFJ
1995 A note on the analysis of species co-occurrences. Ecology 76 1109 1115
92. SundaresanSR
FischhoffIR
DushoffJ
2009 Avoiding spurious findings of nonrandom social structure in association data. Anim Behav 77 1381 1385
93. SorićB
1989 “Discoveries” and effect-size estimation. J Am Stat Assoc 84 608 610
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 2
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci
- MiRNA Control of Vegetative Phase Change in Trees
- The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs
- Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of