#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

14-3-3 Proteins Regulate Exonuclease 1–Dependent Processing of Stalled Replication Forks


Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3–deficient cells fail to induce Mec1–dependent Exo1 hyperphosphorylation and accumulate Exo1–dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.


Vyšlo v časopise: 14-3-3 Proteins Regulate Exonuclease 1–Dependent Processing of Stalled Replication Forks. PLoS Genet 7(4): e32767. doi:10.1371/journal.pgen.1001367
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001367

Souhrn

Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3–deficient cells fail to induce Mec1–dependent Exo1 hyperphosphorylation and accumulate Exo1–dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.


Zdroje

1. BranzeiD

FoianiM

2010 Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11 208 219

2. Muzi-FalconiM

LiberiG

LuccaC

FoianiM

2003 Mechanisms controlling the integrity of replicating chromosomes in budding yeast. Cell Cycle 2 564 567

3. LopesM

Cotta-RamusinoC

PellicioliA

LiberiG

PlevaniP

2001 The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412 557 561

4. Cotta-RamusinoC

FachinettiD

LuccaC

DoksaniY

LopesM

2005 Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell 17 153 159

5. LeeBI

WilsonDM3rd

1999 The RAD2 domain of human exonuclease 1 exhibits 5′ to 3′ exonuclease and flap structure-specific endonuclease activities. J Biol Chem 274 37763 37769

6. SzankasiP

SmithGR

1992 A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem 267 3014 3023

7. TishkoffDX

AminNS

ViarsCS

ArdenKC

KolodnerRD

1998 Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 58 5027 5031

8. SzankasiP

SmithGR

1995 A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science 267 1166 1169

9. FiorentiniP

HuangKN

TishkoffDX

KolodnerRD

SymingtonLS

1997 Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol 17 2764 2773

10. KirkpatrickDT

FergusonJR

PetesTD

SymingtonLS

2000 Decreased meiotic intergenic recombination and increased meiosis I nondisjunction in exo1 mutants of Saccharomyces cerevisiae. Genetics 156 1549 1557

11. TsubouchiH

OgawaH

2000 Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell 11 2221 2233

12. MimitouEP

SymingtonLS

2009 DNA end resection: Many nucleases make light work. DNA Repair (Amst)

13. QiuJ

QianY

ChenV

GuanMX

ShenB

1999 Human exonuclease 1 functionally complements its yeast homologues in DNA recombination, RNA primer removal, and mutation avoidance. J Biol Chem 274 17893 17900

14. El-ShemerlyM

JanscakP

HessD

JiricnyJ

FerrariS

2005 Degradation of human exonuclease 1b upon DNA synthesis inhibition. Cancer Res 65 3604 3609

15. El-ShemerlyM

HessD

PyakurelAK

MoselhyS

FerrariS

2008 ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res 36 511 519

16. BoldersonE

TomimatsuN

RichardDJ

BoucherD

KumarR

2010 Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res 38 1821 1831

17. MorinI

NgoHP

GreenallA

ZubkoMK

MorriceN

2008 Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J 27 2400 2410

18. SeguradoM

DiffleyJF

2008 Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev 22 1816 1827

19. MorrisonDK

2009 The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19 16 23

20. XiaoB

SmerdonSJ

JonesDH

DodsonGG

SonejiY

1995 Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376 188 191

21. GardinoAK

SmerdonSJ

YaffeMB

2006 Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol 16 173 182

22. BraselmannS

McCormickF

1995 Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J 14 4839 4848

23. BridgesD

MoorheadGB

2005 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005 re10

24. YahyaouiW

CallejoM

PriceGB

Zannis-HadjopoulosM

2007 Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast. BMC Mol Biol 8 27

25. YahyaouiW

Zannis-HadjopoulosM

2009 14-3-3 proteins function in the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae. J Cell Sci 122 4419 4426

26. LottersbergerF

RubertF

BaldoV

LucchiniG

LongheseMP

2003 Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress. Genetics 165 1717 1732

27. UsuiT

PetriniJH

2007 The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Proc Natl Acad Sci U S A 104 2797 2802

28. LottersbergerF

PanzaA

LucchiniG

LongheseMP

2007 Functional and physical interactions between yeast 14-3-3 proteins, acetyltransferases, and deacetylases in response to DNA replication perturbations. Mol Cell Biol 27 3266 3281

29. AlvarezD

NovacO

CallejoM

RuizMT

PriceGB

2002 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication. J Cell Biochem 87 194 207

30. FioraniS

MimunG

CalecaL

PicciniD

PellicioliA

2008 Characterization of the activation domain of the Rad53 checkpoint kinase. Cell Cycle 7 493 499

31. SzyjkaSJ

AparicioJG

ViggianiCJ

KnottS

XuW

2008 Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev 22 1906 1920

32. KinoshitaE

Kinoshita-KikutaE

MatsubaraM

YamadaS

NakamuraH

2008 Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8 2994 3003

33. LopesM

2009 Electron microscopy methods for studying in vivo DNA replication intermediates. Methods Mol Biol 521 605 631

34. SogoJM

LopesM

FoianiM

2002 Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297 599 602

35. LopesM

FoianiM

SogoJM

2006 Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21 15 27

36. NewlonCS

TheisJF

1993 The structure and function of yeast ARS elements. Curr Opin Genet Dev 3 752 758

37. Pozuelo RubioM

GeraghtyKM

WongBH

WoodNT

CampbellDG

2004 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J 379 395 408

38. JinJ

SmithFD

StarkC

WellsCD

FawcettJP

2004 Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14 1436 1450

39. YangX

LeeWH

SobottF

PapagrigoriouE

RobinsonCV

2006 Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A 103 17237 17242

40. ThomasBJ

RothsteinR

1989 Elevated recombination rates in transcriptionally active DNA. Cell 56 619 630

41. JiaoR

BachratiCZ

PedrazziG

KusterP

PetkovicM

2004 Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1. Mol Cell Biol 24 4710 4719

42. Muzi FalconiM

PiseriA

FerrariM

LucchiniG

PlevaniP

1993 De novo synthesis of budding yeast DNA polymerase alpha and POL1 transcription at the G1/S boundary are not required for entrance into S phase. Proc Natl Acad Sci U S A 90 10519 10523

43. WuY

LiQ

ChenXZ

2007 Detecting protein-protein interactions by Far western blotting. Nat Protoc 2 3278 3284

44. DemmelL

BeckM

KloseC

SchlaitzAL

GloorY

2008 Nucleocytoplasmic shuttling of the Golgi phosphatidylinositol 4-kinase Pik1 is regulated by 14-3-3 proteins and coordinates Golgi function with cell growth. Mol Biol Cell 19 1046 1061

45. LopesM

Cotta-RamusinoC

LiberiG

FoianiM

2003 Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol Cell 12 1499 1510

46. ObrdlikP

El-BakkouryM

HamacherT

CappellaroC

VilarinoC

2004 K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc Natl Acad Sci U S A 101 12242 12247

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#