#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “–Sensitive” Genes and Natural Variation


The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation.


Vyšlo v časopise: Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “–Sensitive” Genes and Natural Variation. PLoS Genet 7(4): e32767. doi:10.1371/journal.pgen.1001376
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001376

Souhrn

The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation.


Zdroje

1. LongEO

DawidIB

1980 Repeated genes in eukaryotes. Annu Rev Biochem 49 727 764

2. ProkopowichCD

GregoryTR

CreaseTJ

2003 The correlation between rDNA copy number and genome size in eukaryotes. Genome 46 48 50

3. LyckegaardEM

ClarkAG

1989 Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A 86 1944 1948

4. KarpenGH

SchaeferJE

LairdCD

1988 A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev 2 1745 1763

5. TartofKD

1973 Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics 73 57 71

6. TerracolR

Prud'hommeN

1981 26S and 18S rRNA synthesis in bobbed mutants of Drosophila melanogaster. Biochimie 63 451 455

7. FrenchSL

OsheimYN

CiociF

NomuraM

BeyerAL

2003 In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23 1558 1568

8. IdeS

MiyazakiT

MakiH

KobayashiT

2010 Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327 693 696

9. BridgesCB

1916 Non-Disjunction as Proof of the Chromosome Theory of Heredity (Concluded). Genetics 1 107 163

10. ParedesS

MaggertKA

2009 Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci U S A 106 17829 17834

11. LemosB

AraripeLO

HartlDL

2008 Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319 91 93

12. LemosB

BrancoAT

HartlLD

2010 Epigenetic modulation of gene expression by polymorphic Y chromosomes: Sexual conflict, chromatin components, and immune response. Proc Natl Acad Sci U S A in press

13. JiangPP

HartlDL

LemosB

2010 Y Not a Dead End: Epistatic Interactions Between Y-linked Regulatory Polymorphisms and Genetic Background Affect Global Gene Expression in Drosophila melanogaster. Genetics

14. MaggertKA

GolicKG

2005 Highly efficient sex chromosome interchanges produced by I-CreI expression in Drosophila. Genetics 171 1103 1114

15. PellegriniM

ManningJ

DavidsonN

1977 Sequence arrangement of the rDNA of Drosophila melanogaster. Cell 10 213 214

16. WellauerPK

DawidIB

1977 The structural organization of ribosomal DNA in Drosophila melanogaster. Cell 10 193 212

17. ParedesS

MaggertKA

2009 Expression of I-CreI endonuclease generates deletions within the rDNA of Drosophila. Genetics 181 1661 1671

18. RudolphT

YonezawaM

LeinS

HeidrichK

KubicekS

2007 Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26 103 115

19. TalbertPB

HenikoffS

2006 Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 7 793 803

20. YasuharaJC

WakimotoBT

2008 Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones. PLoS Genet 4 e16 doi:10.1371/journal.pgen.0040016

21. VogelMJ

PagieL

TalhoutW

NieuwlandM

KerkhovenRM

2009 High-resolution mapping of heterochromatin redistribution in a Drosophila position-effect variegation model. Epigenetics Chromatin 2 1

22. GuarenteL

2000 Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14 1021 1026

23. MurayamaA

OhmoriK

FujimuraA

MinamiH

Yasuzawa-TanakaK

2008 Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133 627 639

24. JohnsonFB

SinclairDA

GuarenteL

1999 Molecular biology of aging. Cell 96 291 302

25. DryginD

RiceWG

GrummtI

2010 The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50 131 156

26. PengJC

KarpenGH

2007 H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9 25 35

27. PengJC

KarpenGH

2009 Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet 5 e1000435 doi:10.1371/journal.pgen.1000435

28. KobayashiT

2008 A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity. Bioessays 30 267 272

29. RosenbergMI

ParkhurstSM

2002 Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell 109 447 458

30. FuruyamaT

BanerjeeR

BreenTR

HartePJ

2004 SIR2 is required for polycomb silencing and is associated with an E(Z) histone methyltransferase complex. Curr Biol 14 1812 1821

31. MichelAH

KornmannB

DubranaK

ShoreD

2005 Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes Dev 19 1199 1210

32. BoisvertFM

van KoningsbruggenS

NavascuesJ

LamondAI

2007 The multifunctional nucleolus. Nat Rev Mol Cell Biol 8 574 585

33. TalbertPB

HenikoffS

2000 A reexamination of spreading of position-effect variegation in the white-roughest region of Drosophila melanogaster. Genetics 154 259 272

34. AhmadK

HenikoffS

2001 Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104 839 847

35. StultsDM

KillenMW

PierceHH

PierceAJ

2008 Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18 13 18

36. RiddleNC

RichardsEJ

2002 The control of natural variation in cytosine methylation in Arabidopsis. Genetics 162 355 363

37. CullisCA

2005 Mechanisms and control of rapid genomic changes in flax. Ann Bot 95 201 206

38. SchneebergerRG

CullisCA

1991 Specific DNA alterations associated with the environmental induction of heritable changes in flax. Genetics 128 619 630

39. HawleyRS

TartofKD

1985 A two-stage model for the control of rDNA magnification. Genetics 109 691 700

40. TartofKD

1974 Unequal mitotic sister chromatin exchange as the mechanism of ribosomal RNA gene magnification. Proc Natl Acad Sci U S A 71 1272 1276

41. CohenS

YacobiK

SegalD

2003 Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13 1133 1145

42. SmythGK

2004 Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 Article3

43. GentlemanR

2005 Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York Springer

44. BenjaminiY

HochbergY

1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57 289 300

45. TownsendJP

HartlDL

2002 Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments. Genome Biol 3 RESEARCH0071

46. Castillo-DavisCI

HartlDL

2003 GeneMerge--post-genomic analysis, data mining, and hypothesis testing. Bioinformatics 19 891 892

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#