Genome-Wide Association Study Using Extreme Truncate Selection
Identifies Novel Genes Affecting Bone Mineral Density and Fracture
Risk
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low
bone mineral density (BMD) is a major predisposing factor to fracture and is
known to be highly heritable. Site-, gender-, and age-specific genetic effects
on BMD are thought to be significant, but have largely not been considered in
the design of genome-wide association studies (GWAS) of BMD to date. We report
here a GWAS using a novel study design focusing on women of a specific age
(postmenopausal women, age 55–85 years), with either extreme high or low
hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0,
n = 1055, or −4.0 to −1.5,
n = 900), with replication in cohorts of women drawn from
the general population (n = 20,898). The study replicates
21 of 26 known BMD–associated genes. Additionally, we report suggestive
association of a further six new genetic associations in or around the genes
CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and
SOX4, with replication in two independent datasets. A novel
mouse model with a loss-of-function mutation in GALNT3 is also
reported, which has high bone mass, supporting the involvement of this gene in
BMD determination. In addition to identifying further genes associated with BMD,
this study confirms the efficiency of extreme-truncate selection designs for
quantitative trait association studies.
Vyšlo v časopise:
Genome-Wide Association Study Using Extreme Truncate Selection
Identifies Novel Genes Affecting Bone Mineral Density and Fracture
Risk. PLoS Genet 7(4): e32767. doi:10.1371/journal.pgen.1001372
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1001372
Souhrn
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low
bone mineral density (BMD) is a major predisposing factor to fracture and is
known to be highly heritable. Site-, gender-, and age-specific genetic effects
on BMD are thought to be significant, but have largely not been considered in
the design of genome-wide association studies (GWAS) of BMD to date. We report
here a GWAS using a novel study design focusing on women of a specific age
(postmenopausal women, age 55–85 years), with either extreme high or low
hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0,
n = 1055, or −4.0 to −1.5,
n = 900), with replication in cohorts of women drawn from
the general population (n = 20,898). The study replicates
21 of 26 known BMD–associated genes. Additionally, we report suggestive
association of a further six new genetic associations in or around the genes
CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and
SOX4, with replication in two independent datasets. A novel
mouse model with a loss-of-function mutation in GALNT3 is also
reported, which has high bone mass, supporting the involvement of this gene in
BMD determination. In addition to identifying further genes associated with BMD,
this study confirms the efficiency of extreme-truncate selection designs for
quantitative trait association studies.
Zdroje
1. US Department of Health and Human Services
2004
Bone health and Osteoporosis: a report of the surgeon
general.
Rockville, MD, USA
2. US Department of Commerce
1993
Hip fracture rates in people aged fifty years and over:
mortality, service use, expenditures, and long-term functional
impairment.
Washington, DC
3. Johnell
O
Kanis
JA
2006
An estimate of the worldwide prevalence and disability associated
with osteoporotic fractures.
Osteoporos Int
17
1726
1733
4. Kanis
JA
Johnell
O
Oden
A
Johansson
H
McCloskey
E
2008
FRAX and the assessment of fracture probability in men and women
from the UK.
Osteoporos Int
19
385
397
5. Henry
MJ
Pasco
JA
Seeman
E
Nicholson
GC
Sanders
KM
2001
Assessment of fracture risk: value of random population-based
samples—the Geelong Osteoporosis Study.
J Clin Densitom
4
283
289
6. Nguyen
ND
Pongchaiyakul
C
Center
JR
Eisman
JA
Nguyen
TV
2005
Identification of high-risk individuals for hip fracture: a
14-year prospective study.
J Bone Miner Res
20
1921
1928
7. Arden
NK
Baker
J
Hogg
C
Baan
K
Spector
TD
1996
The heritability of bone mineral density, ultrasound of the
calcaneus and hip axis length: a study of postmenopausal
twins.
J Bone Miner Res
11
530
534
8. Arden
NK
Spector
TD
1997
Genetic influences on muscle strength, lean body mass, and bone
mineral density: a twin study.
J Bone Miner Res
12
2076
2081
9. Dequeker
J
Nijs
J
Verstraeten
A
Geusens
P
Gevers
G
1987
Genetic determinants of bone mineral content at the spine and
radius: a twin study.
Bone
8
207
209
10. Harris
M
Nguyen
TV
Howard
GM
Kelly
PJ
Eisman
JA
1998
Genetic and environmental correlations between bone formation and
bone mineral density: a twin study.
Bone
22
141
145
11. Nguyen
TV
Howard
GM
Kelly
PJ
Eisman
JA
1998
Bone mass, lean mass, and fat mass: same genes or same
environments?
Am J Epidemiol
147
3
16
12. Duncan
E
Cardon
L
Sinsheimer
J
Wass
J
Brown
M
2003
Site and Gender Specificity of Inheritance of Bone Mineral
Density.
J Bone Miner Res
18
1531
1538
13. Sigurdsson
G
Halldorsson
BV
Styrkarsdottir
U
Kristjansson
K
Stefansson
K
2008
Impact of genetics on low bone mass in adults.
J Bone Miner Res
23
1584
1590
14. Flicker
L
Hopper
J
Rodgers
L
Kaymakci
B
Green
R
1995
Bone density determinants in elderly women: a twin
study.
J Bone Miner Res
10
1607
1613
15. Duncan
EL
Brown
MA
2010
Clinical review 2: Genetic determinants of bone density and
fracture risk—state of the art and future directions.
J Clin Endocrinol Metab
95
2576
2587
16. Naganathan
V
Macgregor
A
Snieder
H
Nguyen
T
Spector
T
2002
Gender differences in the genetic factors responsible for
variation in bone density and ultrasound.
J Bone Miner Res
17
725
733
17. Rivadeneira
F
Styrkarsdottir
U
Estrada
K
Halldorsson
BV
Hsu
YH
2009
Twenty bone-mineral-density loci identified by large-scale
meta-analysis of genome-wide association studies.
Nat Genet
41
1199
1206
18. Orwoll
ES
Belknap
JK
Klein
RF
2001
Gender specificity in the genetic determinants of peak bone
mass.
J Bone Miner Res
16
1962
1971
19. Henry
MJ
Pasco
JA
Nicholson
GC
Seeman
E
Kotowicz
MA
2000
Prevalence of osteoporosis in Australian women: Geelong
Osteoporosis Study.
J Clin Densitom
3
261
268
20. Bahlo
M
Stankovich
J
Danoy
P
Hickey
PF
Taylor
BV
2010
Saliva-Derived DNA Performs Well in Large-Scale, High-Density
Single-Nucleotide Polymorphism Microarray Studies.
Cancer Epidemiol Biomarkers Prev
19
794
798
21. Richards
JB
Rivadeneira
F
Inouye
M
Pastinen
TM
Soranzo
N
2008
Bone mineral density, osteoporosis, and osteoporotic fractures: a
genome-wide association study.
Lancet
371
1505
1512
22. Styrkarsdottir
U
Halldorsson
BV
Gretarsdottir
S
Gudbjartsson
DF
Walters
GB
2009
New sequence variants associated with bone mineral
density.
Nat Genet
41
15
17
23. Styrkarsdottir
U
Halldorsson
BV
Gretarsdottir
S
Gudbjartsson
DF
Walters
GB
2008
Multiple genetic loci for bone mineral density and
fractures.
N Engl J Med
358
2355
2365
24. Shepherd
JA
Fan
B
Lu
Y
Lewiecki
EM
Miller
P
2006
Comparison of BMD precision for Prodigy and Delphi spine and
femur scans.
Osteoporos Int
17
1303
1308
25. Raychaudhuri
S
Plenge
RM
Rossin
EJ
Ng
AC
Purcell
SM
2009
Identifying relationships among genomic disease regions:
predicting genes at pathogenic SNP associations and rare
deletions.
PLoS Genet
5
e1000534
doi:10.1371/journal.pgen.1000534
26. Price
AL
Weale
ME
Patterson
N
Myers
SR
Need
AC
2008
Long-range LD can confound genome scans in admixed
populations.
Am J Hum Genet
83
132
135; author reply 135-139
27. Li
Y
Willer
CJ
Sanna
S
Abecasis
GR
2009
Genotype imputation.
Annu Rev Genomics Hum Genet
10
387
406
28. Kung
AWC
Xiao
S-M
Cherny
S
Li
GHY
Gao
Y
2010
Assocation of JAG1 with bone mineral density and osteoporotic
fractures: a genome-wide association study and follow-up replication
studies.
Am J Hum Genet
86
1
11
29. Estrada
K
Abuseiris
A
Grosveld
FG
Uitterlinden
AG
Knoch
TA
2009
GRIMP: a web- and grid-based tool for high-speed analysis of
large-scale genome-wide association using imputed data.
Bioinformatics
25
2750
2752
30. Willer
CJ
Sanna
S
Jackson
AU
Scuteri
A
Bonnycastle
LL
2008
Newly identified loci that influence lipid concentrations and
risk of coronary artery disease.
Nat Genet
40
161
169
31. Purcell
S
Cherny
SS
Sham
PC
2003
Genetic Power Calculator: design of linkage and association
genetic mapping studies of complex traits.
Bioinformatics
19
149
150
32. Cho
YS
Go
MJ
Kim
YJ
Heo
JY
Oh
JH
2009
A large-scale genome-wide association study of Asian populations
uncovers genetic factors influencing eight quantitative
traits.
Nat Genet
41
527
534
33. Xiong
DH
Liu
XG
Guo
YF
Tan
LJ
Wang
L
2009
Genome-wide association and follow-up replication studies
identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different
ethnic groups.
Am J Hum Genet
84
388
398
34. Timpson
NJ
Tobias
JH
Richards
JB
Soranzo
N
Duncan
EL
2009
Common variants in the region around Osterix are associated with
bone mineral density and growth in childhood.
Hum Mol Genet
18
1510
1517
35. Esapa
C
Head
R
Chan
E
Crane
M
Cheeseman
M
2009
A mouse with a Trp589Arg mutation in
N-acetylgalactosaminyltransferase 3 (Galnt3) provides a model for familial
tumoural calcinosis.
Endocrine Abstracts
19
OC31
36. Pettersson
U
Albagha
OM
Mirolo
M
Taranta
A
Frattini
A
2005
Polymorphisms of the CLCN7 gene are associated with BMD in
women.
J Bone Miner Res
20
1960
1967
37. Koller
DL
Ichikawa
S
Lai
D
Padgett
LR
Doheny
KF
2010
Genome-wide association study of bone mineral density in
premenopausal European-American women and replication in African-American
women.
J Clin Endocrinol Metab
95
1802
1809
38. Topaz
O
Shurman
DL
Bergman
R
Indelman
M
Ratajczak
P
2004
Mutations in GALNT3, encoding a protein involved in O-linked
glycosylation, cause familial tumoral calcinosis.
Nat Genet
36
579
581
39. Frishberg
Y
Topaz
O
Bergman
R
Behar
D
Fisher
D
2005
Identification of a recurrent mutation in GALNT3 demonstrates
that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis
are allelic disorders.
J Mol Med
83
33
38
40. Larsson
T
Davis
SI
Garringer
HJ
Mooney
SD
Draman
MS
2005
Fibroblast growth factor-23 mutants causing familial tumoral
calcinosis are differentially processed.
Endocrinology
146
3883
3891
41. Urakawa
I
Yamazaki
Y
Shimada
T
Iijima
K
Hasegawa
H
2006
Klotho converts canonical FGF receptor into a specific receptor
for FGF23.
Nature
444
770
774
42. Kawano
K
Ogata
N
Chiano
M
Molloy
H
Kleyn
P
2002
Klotho gene polymorphisms associated with bone density of aged
postmenopausal women.
J Bone Miner Res
17
1744
1751
43. Ogata
N
Matsumura
Y
Shiraki
M
Kawano
K
Koshizuka
Y
2002
Association of klotho gene polymorphism with bone density and
spondylosis of the lumbar spine in postmenopausal women.
Bone
31
37
42
44. Riancho
JA
Valero
C
Hernandez
JL
Ortiz
F
Zarrabeitia
A
2007
Association of the F352V variant of the Klotho gene with bone
mineral density.
Biogerontology
8
121
127
45. Yamada
Y
Ando
F
Niino
N
Shimokata
H
2005
Association of polymorphisms of the androgen receptor and klotho
genes with bone mineral density in Japanese women.
J Mol Med
83
50
57
46. Sims
AM
Shephard
N
Carter
K
Doan
T
Dowling
A
2007
Genetic Analyses in a Sample of Individuals With High or Low Bone
Density Demonstrates Association With Multiple Wnt Pathway
Genes.
J Bone Miner Res
23
499
506
47. van Meurs
JB
Rivadeneira
F
Jhamai
M
Hugens
W
Hofman
A
2006
Common genetic variation of the low-density lipoprotein
receptor-related protein 5 and 6 genes determines fracture risk in elderly
white men.
J Bone Miner Res
21
141
150
48. Kim
KA
Wagle
M
Tran
K
Zhan
X
Dixon
MA
2008
R-Spondin family members regulate the Wnt pathway by a common
mechanism.
Mol Biol Cell
19
2588
2596
49. Blaydon
DC
Ishii
Y
O'Toole
EA
Unsworth
HC
Teh
MT
2006
The gene encoding R-spondin 4 (RSPO4), a secreted protein
implicated in Wnt signaling, is mutated in inherited
anonychia.
Nat Genet
38
1245
1247
50. Aoki
M
Mieda
M
Ikeda
T
Hamada
Y
Nakamura
H
2007
R-spondin3 is required for mouse placental
development.
Dev Biol
301
218
226
51. Trost
Z
Trebse
R
Prezelj
J
Komadina
R
Logar
DB
2010
A microarray based identification of osteoporosis-related genes
in primary culture of human osteoblasts.
Bone
46
72
80
52. Malaval
L
Wade-Gueye
NM
Boudiffa
M
Fei
J
Zirngibl
R
2008
Bone sialoprotein plays a functional role in bone formation and
osteoclastogenesis.
J Exp Med
205
1145
1153
53. Noor
A
Windpassinger
C
Vitcu
I
Orlic
M
Rafiq
MA
2009
Oligodontia is caused by mutation in LTBP3, the gene encoding
latent TGF-beta binding protein 3.
Am J Hum Genet
84
519
523
54. Dabovic
B
Chen
Y
Colarossi
C
Obata
H
Zambuto
L
2002
Bone abnormalities in latent TGF-[beta] binding protein
(Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating
TGF-[beta] bioavailability.
J Cell Biol
156
227
232
55. Nissen-Meyer
LS
Jemtland
R
Gautvik
VT
Pedersen
ME
Paro
R
2007
Osteopenia, decreased bone formation and impaired osteoblast
development in Sox4 heterozygous mice.
J Cell Sci
120
2785
2795
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 4
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- PTG Depletion Removes Lafora Bodies and Rescues the Fatal Epilepsy of Lafora Disease
- Survival Motor Neuron Protein Regulates Stem Cell Division, Proliferation, and Differentiation in
- An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing
- Loss-of-Function Mutations in Cause Metachondromatosis, but Not Ollier Disease or Maffucci Syndrome